摘要 蛋白质是细胞中的关键分子,其丰度不仅在基因表达水平而且在转录后水平受到广泛调控。在这里,我们描述了一种酵母基因筛选方法,该方法能够系统地表征蛋白质丰度调控在基因组中的编码方式。该筛选方法结合了 CRISPR/Cas9 碱基编辑器来引入点突变,并对内源性蛋白质进行荧光标记以方便流式细胞仪读数。我们首先使用单个 gRNA 以及正向和负向选择筛选对酵母中的碱基编辑器性能进行了基准测试。然后,我们研究了 16,452 种基因扰动对代表各种细胞功能的 11 种蛋白质丰度的影响。我们发现了数百种调控关系,包括 GAPDH 同工酶 Tdh1/2/3 与 Ras/PKA 通路之间的新联系。许多已识别的调节因子特定于这 11 种蛋白质中的一种,但我们还发现了一些基因,这些基因在受到扰动时会影响大多数测试蛋白质的丰度。虽然更具体的调控因子通常作用于转录,但广泛的调控因子往往在蛋白质翻译中发挥作用。总的来说,我们的新筛选方法为蛋白质调控网络的组成部分、规模和连通性提供了前所未有的见解。
“系统,决策和控制研究”(SSDC)(SSDC)涵盖了新的发展和进步,以及最新技术的状态,在广泛感知到的系统,决策和控制的各个领域,毫无疑问,最新,并具有高质量。目的是涵盖与系统,决策,控制,复杂过程及相关领域有关的理论,应用和观点,以及工程,计算机科学,物理学,经济学,社会和生命科学以及背后的典范和方法论中所嵌入的。The series contains monographs, textbooks, lecture notes and edited volumes in systems, decision making and control spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other.对贡献者和读者的特殊价值是简短的出版时间范围以及全球范围内的分布和曝光,可以使研究成果的广泛和快速传播。是简短的出版时间范围以及全球范围内的分布和曝光,可以使研究成果的广泛和快速传播。
通过局部序列多样化和同时施加选择压力的合成定向进化是一种很有前途的方法,可用于产生影响不同物种感兴趣性状的新的有益等位基因;然而,这种技术很少应用于植物。在这里,我们设计、构建并测试了 T7 RNA 聚合酶 (RNAP) 和脱氨酶的嵌合融合物,以实现感兴趣的目标序列的局部序列多样化。我们在本氏烟瞬时测定中测试了我们的 T7 RNAP - DNA 碱基编辑器,以靶向在 T7 启动子控制下表达 GFP 的转基因,并观察到 C 到 T 的转换。然后,我们靶向已稳定整合到水稻基因组中的 T7 启动子驱动的乙酰乳酸合酶序列并产生 C 到 T 和 G 到 A 的转换。我们利用除草剂处理作为乙酰乳酸合酶序列进化的选择压力,导致除草剂反应残基的富集。然后我们在转基因水稻植物中验证了这些除草剂反应区域。因此,我们的系统可用于基因功能的持续合成进化,以产生具有改进的除草剂抗性的变体。
本预印本的版权所有者(此版本于 2022 年 5 月 24 日发布。;https://doi.org/10.1101/2022.05.24.493220 doi: bioRxiv preprint
碱基编辑器是 RNA 引导的脱氨酶,可实现位点特异性核苷酸转换。这些 Cas 脱氨酶融合蛋白的靶向范围主要取决于靶基因座处原间隔区相邻基序 (PAM) 的可用性,并且仅限于 CRISPR-Cas R 环内的窗口,其中单链 DNA (ssDNA) 可供脱氨酶接触。在这里,我们推断 Cas9-HNH 核酸酶结构域在空间上限制了 ssDNA 的可及性,并证明省略该结构域会扩大编辑窗口。通过将 HNH 核酸酶结构域与单体或异二聚体腺苷脱氨酶交换,我们还设计了具有 PAM 近端移位编辑窗口的腺嘌呤碱基编辑器变体 (HNHx-ABE)。这项工作扩展了碱基编辑器的靶向范围,并提供了明显更小的碱基编辑器变体。此外,它还提供了 Cas9 蛋白质工程的未来潜在方向,其中 HNH 结构域可以被作用于 ssDNA 的其他酶取代。
我们的平台 Life Edit 的基因组编辑平台提供了大量且多样化的新型 RNA 引导核酸酶 (LEG)、碱基编辑器和逆转录酶编辑器,可提供灵活的编辑策略和前所未有的访问感兴趣的基因组位点的机会。我们的平台源自 AgBiome 不断增长的数万种专有非致病性微生物集合。
ene编辑提供了临床验证的潜力,可以治疗多种遗传疾病,而这些遗传疾病几乎没有治疗方法。由于通过基因编辑对大多数遗传疾病的研究和治疗需要在体内进行编辑,因此在临床上相关的方法,可以在哺乳动物1中有效地传递精确基因编辑剂到组织中的有效递送,而2继续在进步中发挥关键作用。腺相关病毒(AAV)已用于在人类疾病3,4的动物模型3中输送许多编码许多治疗蛋白的基因。AAV已成为一种人口递送方法,其靶向各种临床相关的组织以及相对良好的安全性和有利的安全性。基础编辑器8,9在体外和人类遗传疾病的动物模型中,有效地安装了针对性的过渡突变1,10。与核酸酶介导的基因编辑不同,碱基编辑不需要双链DNA断裂,因此产生了最小的不需要的indel副产物,染色体易位,染色体易位11,染色体非整倍型12,大deletions 13,14,p53激活15,16和Chromothripsis 17。基本编辑器最近进入临床试验,通常太大而无法适应单个AAV,该AAV的货物尺寸限制约为4.7 kb,不包括倒置的终端重复序列(ITRS)18,19。除了基本编辑器本身外,提供基本编辑器的AAV还必须包括指导RNA,启动器驱动基本编辑器和单个指南RNA表达以及顺式调节元素。
到编辑脂质纳米颗粒(LNP)已被广泛批准,并在全球范围内用于传递mRNA。lnps可以包装并传递mRNA编码的基因编辑器,包括腺嘌呤碱基编辑器,它们将T碱基对转换为无需双重DNA断裂或供体DNA的G C C碱基对(Gaudelli等,2017)。腺嘌呤基本编辑器是一种潜在的治疗方法,用于遗传性疾病营养不良的表皮溶液Bullosa(DEB)。deb是由COL7A1的致病变异引起的,导致功能障碍或不存在VII型胶原蛋白(C7),这是固定纤维的主要组成部分,它们粘附了皮肤E表皮连接,从而使皮肤稳定性(Bardhan等,2020)。目前无法治愈DEB;然而,W 90%的Col7a1变体是单核苷酸变体,c> t单核苷酸变体可用于W 60%的变体(Clinvar数据库; 2023年8月访问)。这些变体是由腺嘌呤碱基编辑器定位的;我们的小组和其他人已经证明了腺嘌呤基本编辑器在恢复病原变体和恢复C7表达方面的实用性(Osborn等,2020; Sheriff等,2022)。在这项研究中,我们首先探讨了新型LNP的使用,以mRNA格式传递ABE8E(Richter等,2020),其单一指定RNA(SGRNA)针对致病性C.5047 c> t col7aa1 col7a1 col7a1变体在患者锻造的纸张中
Tingting Fan 1,2Ɨ , Yanhao Cheng 3Ɨ , Yuechao Wu 4,5Ɨ , Shishi Liu 1Ɨ , Xu Tang 1,2Ɨ , Yao He 1 , Shanyue Liao 1 , Xuelian Zheng 1,2 ,Tao Zhang 4,5* , Yiping Qi 3,6* , Yong Zhang 2* 1 Department of Biotechnology, School of Life Sciences and Technology, Center for