DNA 可视化软件必须 1) 注释特征并以图形方式描述 DNA 特征,2) 模拟分子克隆技术,3) 生成具有视觉吸引力的图形输出。优秀的 DNA 可视化软件将意义赋予 DNA 碱基串。从根本上讲,这需要灵活的注释 - 将名称应用于区域,以及功能区域的可视化 - 应用图片来显示序列区域之间的空间关系。每一段 DNA 都应标注其生物学相关属性。此外,生物学家必须能够识别对特定重组技术有用的子序列,例如限制性酶识别序列、重组酶识别序列和重叠末端序列。优秀的 DNA 软件还提供对常见 DNA 操作(例如限制性消化或 Gibson 克隆)的强大计算机模拟。通过计算机操作 DNA,生物学家可以确保重组构建体包括功能完整的片段,这些片段具有顺序和框架内的 DNA。换句话说,优秀的软件允许研究人员综合工作计划。这可能是从所需产品开始在计算机上反向工作以确定所需的输入。相反,它允许研究人员从给定的一组可用质粒开始,并在虚拟实验室中工作以生成可能的产品。最后,可视化软件对于确定分析结果(DNA 序列、诊断 PCR 或限制性消化)是否产生了预期的产品非常有用。科学家可以使用该软件来比对序列或模拟每个步骤的凝胶以确认他们的工作。最后,好的 DNA 软件可以生成具有灵活细节级别的视觉上令人愉悦的输出。这种表示应该可以轻松地以开放且广泛使用的文本或图形格式导出。例如,文本输出可用于生成课堂报告、学生论文或供出版的手稿。同样,图形输出可用于生成会议海报或课堂报告或会议演示的幻灯片。
基础编辑器是基因组编辑工具箱的创新补充,该工具箱向该领域介绍了新的基因组编辑策略。不是使用双链DNA断裂,而是使用核碱酶修饰化学的化学方法有效,精确地将单核苷酸变体(SNV)纳入活细胞的基因组。目前存在两类的DNA碱基编辑器:脱氧基丁胺脱氨酸衍生的编辑器(CBE,促进C•G至T•A突变)和脱氧腺苷脱氨基衍生的基础编辑器(ABES,促进A•T•T to G to G•C突变)。最近,线粒体碱基编辑器的发展也允许将C•G引入T•A突变也将其引入线粒体DNA。基础编辑人员作为治疗剂和研究工具表现出巨大的潜力,并且已经进行了广泛的研究,以改善原始基础编辑构造,以帮助各种学科的研究人员。尽管它们广泛使用,但很少有出版物重点是阐明基础编辑中间体处理过程中所涉及的生物学途径。由于基本编辑器引入了独特的DNA损伤产品(A U•与DNA骨架不匹配,用于CBES,而与DNA骨链的I•与ABES的DNA骨架不匹配)来促进基因组编辑,对DNA损害修复的深入了解,促进或促进基础的进一步改进方面的进一步改进技术,并具有进一步的改进。在这里,我们首先回顾了典型的脱氧尿苷,脱氧氨酸和单链破裂修复。然后,我们讨论这些不同维修过程之间的相互作用如何导致不同的基础编辑结果。通过这篇综述,我们希望促进有关基础编辑的DNA修复机制的周到讨论,并帮助研究人员改善当前的基础编辑和新基础编辑者的发展。
1. 纽约基因组中心,纽约州纽约市,美国。2. 纽约大学生物学系,纽约州纽约市,美国。† 这些作者贡献相同。 * 电子邮件:neville@sanjanalab.org 关键词:Prime 编辑、CRISPR、致病变异、ClinVar、人类遗传变异
1 马萨诸塞大学医学院 RNA 治疗研究所,美国马萨诸塞州伍斯特 01605。2 TriLink BioTechnologies,美国加利福尼亚州圣地亚哥。3 囊性纤维化基金会,CFFT 实验室,美国马萨诸塞州列克星敦 02421。4 马萨诸塞大学医学院生物信息学和整合生物学项目,美国马萨诸塞州伍斯特。5 同济大学生命科学与技术学院,上海 200092。6 麻省理工学院 David H. Koch 综合癌症研究所,美国马萨诸塞州剑桥。7 麻省理工学院化学工程系,美国马萨诸塞州剑桥。8 哈佛大学和麻省理工学院 Broad 研究所 Merkin 医疗变革技术研究所,美国马萨诸塞州剑桥。9 哈佛大学霍华德休斯医学研究所,美国马萨诸塞州剑桥 02138。 10 哈佛大学化学与化学生物学系,美国马萨诸塞州剑桥 02138。11 麻省理工学院医学工程与科学研究所,美国马萨诸塞州剑桥。12 哈佛-麻省理工学院健康科学与技术分部,美国马萨诸塞州剑桥。13 马萨诸塞大学医学院分子、细胞和癌症生物学系,美国马萨诸塞州伍斯特。14 马萨诸塞大学医学院分子医学系,美国马萨诸塞州伍斯特。15 马萨诸塞大学医学院李伟波罕见疾病研究所,美国马萨诸塞州伍斯特市 Plantation Street 368 号,邮编 01605。✉ 电子邮件:Wen.Xue@umassmed.edu
• DLVR-M 平台提供了新功能,可将各种不同的蛋白质和/或 RNA 货物递送至各种不同类型的细胞,同时可能降低免疫原性,因为包膜蛋白来源于人体细胞并在人体细胞中表达。 • 我们预计这些新粒子将广泛应用于许多研究和治疗应用,而这些应用目前受到现有递送方式的功能和特性的限制。 • 这项工作引入了新型包膜,并展示了 DLVR-M 平台在体内和治疗相关原代细胞中有效递送大分子的能力和潜力,而这些细胞通常不接受传统的递送方式。 • 未来的工作将包括更详细地描述这些新型粒子的物理特性和免疫学特征。 致谢
波士顿,2024年1月29日 - 一家渴望通过重写RNA治疗人类疾病的生物技术公司Ascidian Therapeutics今天宣布,美国食品和药物管理局(FDA)已清除了其研究性新药(IND)的应用,并批准了ACDN-01的快速轨道名称。ACDN-01是有史以来的第一个临床RNA外显子编辑器,也是针对Stargardt疾病遗传原因的唯一临床阶段治疗。Ascidian预计将在2024年上半年开始参加ACDN-01的1/2期ACDN-01恒星研究。“ FDA为ACDN-01开放的IND - 第一个清除ACDN-01进行临床开发的监管机构,代表了Ascidian的重要里程碑和更广泛的RNA编辑领域。”海外治疗学总裁兼临时首席执行官。“我们之所以选择首先去FDA,是因为我们对数据的严谨性有信念,并且通过编辑RNA而不是DNA,Aspidian方法带来了独特的优势,具有改变Stargardt病人的生活,并且更广泛地改变了遗传医学的范围。”
需要使用文本编辑器(例如 Notepad)或代码编辑器(例如 Notepad++ 或 Visual Studio Code)来编写资源使用的游戏数据文件。代码编辑器通常还包含其他有用的工具,例如能够同时在多个文件中搜索和替换内容。
需要使用文本编辑器(例如 Notepad)或代码编辑器(例如 Notepad++ 或 Visual Studio Code)来编写资源使用的游戏数据文件。代码编辑器通常还包含其他有用的工具,例如能够同时在多个文件中搜索和替换内容。
引物编辑器 (PE) 可以在不造成供体 DNA 或双链断裂的情况下安装所需的碱基编辑,已用于植物,原则上可以加速作物改良和育种。然而,它们在植物中的编辑效率通常较低。通过基于熔化温度设计序列来优化引物编辑向导 RNA (pegRNA)、使用双 pegRNA 和工程 PE 均已被证明可以提高 PE 效率。此外,基于水稻引物编辑实验数据开发了一个自动化 pegRNA 设计平台 PlantPegDesigner。在本方案中,我们介绍了使用 PlantPegDesigner 设计和优化 pegRNA、构建具有增强编辑效率的工程植物 PE 载体进行引物编辑、使用报告系统评估引物编辑效率以及通过深度扩增子测序比较 PE 的有效性和副产物的详细方案。利用该方案,研究人员可以在4 – 7天内构建优化的用于引物编辑的pegRNA,并在3个月内获得引物编辑的水稻或小麦植物。
请参阅相关出版物和图 2 了解模板设计示例。我们建议使用在插入/替换序列(模板的编辑部分)两端至少有 200bp 同源臂的 dsDNA 模板。我们建议将模板克隆到简单的质粒中
