摘要:尽管档案数字存储行业已接近其物理极限,但需求却在大幅增长,因此出现了替代产品。最近的努力已经证明了 DNA 作为数字存储介质的巨大潜力,具有卓越的信息耐久性、容量和能耗。然而,大多数提出的系统都需要按需从头 DNA 合成技术,这些技术会产生大量有毒废物,因此不具备工业可扩展性和环保性。受半导体存储设备架构和基因编辑最新发展的启发,我们创建了一种称为“DNA 突变覆盖存储”(DMOS)的分子数字数据存储系统,该系统通过利用组合、可寻址、正交和独立的体外 CRISPR 碱基编辑反应来存储信息,将数据写入绿色合成 DNA 磁带的空白池中。作为概念验证,我们在 DNA 磁带上写下了我们学校徽标的位图表示和本研究的标题,并准确地恢复了存储的数据。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativeco mmons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
。CC-BY-NC 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。此版本的版权持有者于 2022 年 12 月 8 日发布。;https://doi.org/10.1101/2022.12.08.519658 doi:bioRxiv 预印本
引物编辑器 (PE) 可以在不造成供体 DNA 或双链断裂的情况下安装所需的碱基编辑,已用于植物,原则上可以加速作物改良和育种。然而,它们在植物中的编辑效率通常较低。通过基于熔化温度设计序列来优化引物编辑向导 RNA (pegRNA)、使用双 pegRNA 和工程 PE 均已被证明可以提高 PE 效率。此外,基于水稻引物编辑实验数据开发了一个自动化 pegRNA 设计平台 PlantPegDesigner。在本方案中,我们介绍了使用 PlantPegDesigner 设计和优化 pegRNA、构建具有增强编辑效率的工程植物 PE 载体进行引物编辑、使用报告系统评估引物编辑效率以及通过深度扩增子测序比较 PE 的有效性和副产物的详细方案。利用该方案,研究人员可以在4 – 7天内构建优化的用于引物编辑的pegRNA,并在3个月内获得引物编辑的水稻或小麦植物。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2022 年 10 月 21 日发布。;https://doi.org/10.1101/2022.10.20.513037 doi:bioRxiv 预印本
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 11 月 1 日发布。;https://doi.org/10.1101/2022.10.31.514567 doi:bioRxiv preprint
通过局部序列多样化和同时施加选择压力的合成定向进化是一种很有前途的方法,可用于产生影响不同物种感兴趣性状的新的有益等位基因;然而,这种技术很少应用于植物。在这里,我们设计、构建并测试了 T7 RNA 聚合酶 (RNAP) 和脱氨酶的嵌合融合物,以实现感兴趣的目标序列的局部序列多样化。我们在本氏烟瞬时测定中测试了我们的 T7 RNAP - DNA 碱基编辑器,以靶向在 T7 启动子控制下表达 GFP 的转基因,并观察到 C 到 T 的转换。然后,我们靶向已稳定整合到水稻基因组中的 T7 启动子驱动的乙酰乳酸合酶序列并产生 C 到 T 和 G 到 A 的转换。我们利用除草剂处理作为乙酰乳酸合酶序列进化的选择压力,导致除草剂反应残基的富集。然后我们在转基因水稻植物中验证了这些除草剂反应区域。因此,我们的系统可用于基因功能的持续合成进化,以产生具有改进的除草剂抗性的变体。
细胞膜含有多种脂质,由于缺乏原位控制调节膜组成的方法,人们对于单个脂质生物学功能的了解一直受到阻碍。在这里,我们提出了一种编辑磷脂的策略,磷脂是生物膜中最丰富的脂质。我们的膜编辑器基于细菌磷脂酶 D (PLD),它通过水或外源醇对磷脂酰胆碱进行水解或转磷脂酰化来交换磷脂头部基团。利用哺乳动物细胞中活性依赖性的定向酶进化,我们开发并从结构上表征了一个“超级PLD”家族,其活性比野生型 PLD 高 100 倍。我们证明了超级PLD 在活细胞中特定细胞器膜内光遗传学编辑磷脂以及体外生物催化合成天然和非天然设计磷脂的实用性。除了超级PLD之外,哺乳动物细胞中基于活动的定向酶进化是一种可推广的方法,可以设计出额外的化学酶生物分子编辑器。
• 脱氨酶的定向进化 • PAM 变体碱基编辑器 • 定向进化 Cas9 以创建用于 BE 的非 NGG PAM 变体 • 密码子、NLS 和接头优化 • 环状置换体和镶嵌碱基编辑器 • DNA 脱靶评估 • RNA 脱靶评估 • 旁观者编辑最小化 • 引导 RNA 工程 • 离体和体内 BE 递送 • 最小化脱靶活性的工程 BE • HSC、肝细胞和 T 细胞的离体碱基编辑 • ABE 的低温电子显微镜结构 • 小鼠体内碱基编辑 • 非人类灵长类动物体内编辑
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2022年8月13日。 https://doi.org/10.1101/2022.08.12.503700 doi:Biorxiv Preprint