摘要:地形机载 LiDAR 数据的使用已成为考古勘探的重要组成部分,并且对考古特定数据处理工作流程的需求是众所周知的。因此,令人惊讶的是,很少有人关注处理的关键要素:考古专用 DEM。因此,本文的目的是详细描述考古专用 DEM,提供其自动精度评估工具,并确定适当的网格分辨率。我们将考古专用 DEM 定义为 DEM 的子类型,它是从地面点、建筑物和四种形态类型的考古特征插值而来的。我们引入了一个置信度图(QGIS 插件),为每个网格单元分配一个置信度。这主要用于为每个考古特征附加一个置信度,这对于检测考古解释中的数据偏差很有用。置信度映射也是确定特定数据集最佳网格分辨率的有效工具。除了考古应用之外,置信度图还为分割提供了明确的标准,这是 DEM 插值中尚未解决的问题之一。所有这些都是朝着机载 LiDAR 在考古学中的一般方法成熟迈出的重要一步,这是我们的最终目标。
摘要当受试者穿过空间环境时,网格单元显示以三角形网格模式排列的射击场。直接记录人脑网格细胞很少见。因此,功能性磁共振成像(fMRI)研究提出了一种间接度量内嗅网格细胞活性的度量,被定量为fMRI活性的六个方向调节,作为受试者运动方向的函数。然而,尚不清楚网格细胞群的活性如何表现出六个方向调节。在这里,我们使用数值模拟和分析计算来表明,通过与网格轴对齐的头向调整,可以最好地解释这种六个方向调制,而在特定相位偏移的网格细胞偏置方面并没有明确支持它。点火率适应可能会导致六个方向调制,但是可用的蜂窝数据不足以明确支持或反驳此选项。十六进制调制的大小还在很大程度上取决于受试者的导航模式,这表明可以设计未来的fMRI研究来检验哪种假设最有可能解释网格细胞的fMRI量度。我们的发现还强调了量化人网格细胞的适当的重要性,以进一步阐明fMRI活性可能出现的六边形调制。
作物保险虽然很有必要,但在肯尼亚农业中却尚未扎根,现有的少量保险都是以赔偿为基础的,也就是说,农民只能根据评估的作物损失或收成不足获得赔偿。对于普通自给自足的农民来说,这往往既麻烦又昂贵。更好的方法是使用基于指数的保险,即计算一个商定的指数,然后根据该指数的价值向农民赔偿或不赔偿。遥感技术现已在全球广泛应用,它提供了这样一个指数,即归一化植被指数 (NDVI),它是公认的衡量作物在不同生长阶段健康状况的指标。本文报告了一项于 2019 年中期进行的研究,该研究旨在调查以这种方式应用遥感为肯尼亚米戈里县的玉米农民提供作物保险的可能性。我们获取了 2017 年 5 月(作为保险年度)的 Sentinel 2 影像,并对研究区域进行了分类并生成了 NDVI。叠加一个 8 Km × 8 Km 的网格,并计算每个网格单元的平均 NDVI。获取了 2016 年 5 月的类似影像,并进行类似处理,以提供参考 NDVI 平均值。对于任何网格单元,如果 A p 为保险年度 NDVI,A r 为参考 NDVI,则保险指数计算为 (A p - A r ),如果该值为负数,则会触发农民赔偿。结果表明,在研究区域内约 85 个小农场中,有 30 个有资格获得此类赔偿。建议在研究区域和类似的玉米种植区进一步完善和试点测试这些结果。
1人工智能(AI),机器学习(ML),深度学习(DL),计算机视觉(CV)和对象检测之间的关系。。。。。。。。。。。。4 2通过乘以网格单元中存在的ob ject的概率以及在预测和地面真相边界框之间与联合(iou)相交的概率来计算YOLO中的信心评分。。。。。。。。。。。。。。。。。。。。。。5 3边界框预测图。。。。。。。。。。。。。。。。。。。。。。。。。。。5 4 iou通用公式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 5 iou二进制公式(tp = true straine,fn = false n = false and and fp =假阳性。)6 6 YOLO架构。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 7边界盒坐标损耗包含对象的网格单元。。。。。。。。。。。7 8包含对象的网格单元的边界框宽度和高度损失。。。。。。。。7 9包含对象的网格单元的置信分数损失。。。。。。。。。。。。。。。。7 10不包含对象的网格单元的置信分数损失。。。。。。。。。。。。。。7 11分类损失在网格细胞中存在对象。。。。。。。。。。。。。。。。。。。7 12目录结构,用于组织食物图像及其相应的标签,用于在Yolo模型中进行训练,验证和测试。。。。。。。。。。。。。。。。。。14 13各种食物类别的yolov5对象检测的精确构态曲线。。17 14 F1分数曲线Yolov5对象在各种食物类别上检测。。。。。。。。。17 15 Yolov5损失曲线和关键指标(精度,召回和地图)在时期。。。18 16混淆矩阵说明了Yolov5模型在分类不同的食物类别中的性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 17各种食物类别的yolov6对象检测的精确构度曲线。19 18 F1分数曲线Yolov6对象检测各种食物类别。。。。。19 19 Yolov6损失曲线和关键指标(精度,回忆和地图)。。。20 20混乱矩阵说明了Yolov6模型在分类不同的食物类别中的性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 21各种食物类别的yolov7对象检测的精确构度曲线。。21 22 22 F1分数曲线在各种食物类别上检测。。。。。。。。。21 23 Yolov7损失曲线和关键指标(精度,召回和映射)在时期。。。。22 24混乱矩阵说明了Yolov8模型在分类不同的食物类别中的性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 25在各种食物类别上用于yolov8对象检测的精确构度曲线。。23 26 F1在各种食物类别上检测Yolov8对象检测的得分曲线。。。。。。。。。23 27 Yolov8损失曲线和关键指标(精度,召回和映射)。。。。24 28混乱矩阵说明了Yolov8模型在分类不同的食物类别中的性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 29 YOLO模型的比较:检测速度和训练时间。。。。。。。。。。26 30跨关键评估大会的YOLO模型的全面绩效比较。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 31用户帐户注册提示用户输入其个人信息和健康数据以进行个性化卡路里跟踪。。。。。。。。。。。。。。。。。。。。。。29 32登录页面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 33带有输入接口的主页,具有使用设备相机捕获图像或从设备存储中上传现有图像的选项。。。。。。。。30 34卡路里跟踪页面,显示每日卡路里限制,当天消耗卡路里,详细的食物日志以及每月的日历,突出显示每日卡路里的摄入量。。。。31
摘要。格陵兰数字高程模型 (DEM) 对于实地考察、冰速计算和质量变化估计必不可少。以前的 DEM 为整个格陵兰岛提供了合理的估计,但应用源数据的时间跨度可能会导致质量变化估计偏差。为了提供具有特定时间戳的 DEM,我们应用了大约 5 。从 2018 年 11 月到 2019 年 11 月的 8 × 10 8 ICESat-2 观测来生成新的 DEM,包括格陵兰岛外围的冰盖和冰川。分别在 500 m、1 km、2 km 和 5 km 网格单元进行时空模型拟合过程,并以 500 m 的模态分辨率发布最终 DEM。总共有 98% 的网格由模型拟合获得,其余的 DEM 间隙通过普通克里金插值法估算。与机载地形测绘仪 (ATM) 激光雷达系统获取的 IceBridge 任务数据相比,ICESat-2 DEM 估计最大中值差异为 − 0 。48 米。通过模型拟合和插值获得的网格性能相似,均与 IceBridge 数据高度一致。在低纬度和高坡度或粗糙度地区,DEM 不确定性会增加。此外,与其他高度计得出的 DEM 相比,ICESat-2 DEM 显示出显着的精度改进,并且其精度与立体摄影测量和干涉测量得出的精度相当。格陵兰 DEM 及其不确定性可在 https://doi.org/10.11888/Geogra.tpdc.271336 (Fan 等人,2021 年) 上找到。总体而言,ICESat-2 DEM 在各种地形条件下都表现出了出色的精度稳定性,可以提供具有特定时间戳的高精度 DEM,这将有助于研究格陵兰岛海拔和质量平衡变化。