Loading...
机构名称:
¥ 4.0

1人工智能(AI),机器学习(ML),深度学习(DL),计算机视觉(CV)和对象检测之间的关系。。。。。。。。。。。。4 2通过乘以网格单元中存在的ob ject的概率以及在预测和地面真相边界框之间与联合(iou)相交的概率来计算YOLO中的信心评分。。。。。。。。。。。。。。。。。。。。。。5 3边界框预测图。。。。。。。。。。。。。。。。。。。。。。。。。。。5 4 iou通用公式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 5 iou二进制公式(tp = true straine,fn = false n = false and and fp =假阳性。)6 6 YOLO架构。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 7边界盒坐标损耗包含对象的网格单元。。。。。。。。。。。7 8包含对象的网格单元的边界框宽度和高度损失。。。。。。。。7 9包含对象的网格单元的置信分数损失。。。。。。。。。。。。。。。。7 10不包含对象的网格单元的置信分数损失。。。。。。。。。。。。。。7 11分类损失在网格细胞中存在对象。。。。。。。。。。。。。。。。。。。7 12目录结构,用于组织食物图像及其相应的标签,用于在Yolo模型中进行训练,验证和测试。。。。。。。。。。。。。。。。。。14 13各种食物类别的yolov5对象检测的精确构态曲线。。17 14 F1分数曲线Yolov5对象在各种食物类别上检测。。。。。。。。。17 15 Yolov5损失曲线和关键指标(精度,召回和地图)在时期。。。18 16混淆矩阵说明了Yolov5模型在分类不同的食物类别中的性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 17各种食物类别的yolov6对象检测的精确构度曲线。19 18 F1分数曲线Yolov6对象检测各种食物类别。。。。。19 19 Yolov6损失曲线和关键指标(精度,回忆和地图)。。。20 20混乱矩阵说明了Yolov6模型在分类不同的食物类别中的性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 21各种食物类别的yolov7对象检测的精确构度曲线。。21 22 22 F1分数曲线在各种食物类别上检测。。。。。。。。。21 23 Yolov7损失曲线和关键指标(精度,召回和映射)在时期。。。。22 24混乱矩阵说明了Yolov8模型在分类不同的食物类别中的性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 25在各种食物类别上用于yolov8对象检测的精确构度曲线。。23 26 F1在各种食物类别上检测Yolov8对象检测的得分曲线。。。。。。。。。23 27 Yolov8损失曲线和关键指标(精度,召回和映射)。。。。24 28混乱矩阵说明了Yolov8模型在分类不同的食物类别中的性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 29 YOLO模型的比较:检测速度和训练时间。。。。。。。。。。26 30跨关键评估大会的YOLO模型的全面绩效比较。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 31用户帐户注册提示用户输入其个人信息和健康数据以进行个性化卡路里跟踪。。。。。。。。。。。。。。。。。。。。。。29 32登录页面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 33带有输入接口的主页,具有使用设备相机捕获图像或从设备存储中上传现有图像的选项。。。。。。。。30 34卡路里跟踪页面,显示每日卡路里限制,当天消耗卡路里,详细的食物日志以及每月的日历,突出显示每日卡路里的摄入量。。。。31

自动食品识别和卡路里管理...

自动食品识别和卡路里管理...PDF文件第1页

自动食品识别和卡路里管理...PDF文件第2页

自动食品识别和卡路里管理...PDF文件第3页

自动食品识别和卡路里管理...PDF文件第4页

自动食品识别和卡路里管理...PDF文件第5页