摘要:从基于现实的数据开始的3D几何形状的重建是具有挑战性的,并且由于对现有结构进行建模和建筑遗产的复杂性的困难,因此具有挑战性且耗时。本文介绍了一种方法论方法,用于对测量产出的自动分割和分类,以改善从激光扫描和摄影数据的解释和构建信息建模。的研究重点是测量19-20-21世纪后期的网状,空间网格结构,这是我们的建筑遗产的一部分,这可能需要监视维护活动,并依赖于人工智能(机器学习和深度学习),用于以下方面: 加工。专注于博洛尼亚(Bologna)的钢中的网格结构的案例研究,这项工作就数据准确性,几何和空间复杂性,语义分类和组件识别提出了许多关键问题。
摘要。通过分析出版物和研究,发现空间杆晶格系统的空间网格结构的特征是它们的有效静态行为。构造结构的应力 - 应变状态,特别是平板,可以显着取决于许多因素:基础电池的形状,其依赖于支撑物(墙壁,柱子)的方式,支撑位置的排列方法以及平板的厚度。作为研究分析的结论,可以说,影响结构材料能力的这些因素之一(力调节剂)的研究很重要。有限的空间网格结构元素模型,这些模型在支持结构的列的布置上有所不同。柱的布置以三种方式进行:列位于平板的角落;柱位于平板的两个平行侧;两侧的平板4.5 m内部位置。也就是说,列定位的方法是平板元素中力的调节因子。列布置的变体可用于确定静态行为最有效的模型。因此,这个最有效的模型也将是最少的物质密集型模型,即它的重量最低。确定了来自考虑变体的最合理(有效)模型。效率取决于更合理的应力 - 应变状态的标准。根据第一和第二组的极限状态选择元素横截面的选择。计数每个模型的重量,并确定以最低材料容量为特征的模型。根据材料容量的标准,空间网格结构的最有效模型是模型3,由4.5 m内部的4列支撑。
摘要:本文提出了不同强度对大地圆顶结构的影响的确定。根据常规的八面体设计了分析圆顶的结构,该结构是根据创建其拓扑的两种不同的方法。使用了四个不同强度和记录持续时间的地震记录,这使得对8个模型进行数值分析成为可能。设计的空间结构是带有钢横截面的圆顶,这一点毫无疑问地以其轻度和覆盖非常大的面积的可能性,而无需使用内部支撑。设计钢圆顶目前是构造师和建筑师的挑战,他们考虑了他们的美学考虑。使用时间历史方法,该论文在应用不同方向(两个水平的“ X”和“ Y”和一个垂直“ Z”)中呈现了地震响应。显示了强制振动和记录强度的值,在此基础上,试图确定哪种地震记录可能对根据两种不同的结构拓扑而产生的设计的地质圆顶可能更不利。为此,使用了FFT(快速傅立叶变换)方法。还分析了结构的最大加速度和位移。进行的分析表明,地震激发对大地圆顶结构的影响,具体取决于塑造其拓扑的应用方法(方法1和2)。此外,该分析可能有助于评估偶然地震的影响。本文无疑将在设计地震区域的地球圆顶结构中有用。