摘要 本研究旨在利用网络药理学和分子对接方法探讨瓜蒌-当归-乳香-没药(TAFM)治疗乳腺癌的关键活性成分、潜在靶点及其分子机制。利用中药系统药理学数据库与分析平台(TCMSP)数据库获取TAFM的化学成分和相关靶点;利用GeneCards、OMIM、Drugbank和治疗靶点数据库(TTD)等数据库识别乳腺癌相关靶点;利用Cytoscape 3.9.1软件和STRING(Search Tool for the Retrieval of Interaction Gene/Proteins)数据库可视化药物成分-靶点-疾病和蛋白质相互作用网络,筛选核心成分和关键靶点。使用DAVID(Database for Annotation, Visualization and Integrated Discovery)数据库进行基因本体论(GO)和京都基因和基因组百科全书(KEGG)分析,使用AutoDock和PyMOL软件进行分子对接。发现TAFM在治疗乳腺癌中的关键活性成分包括β-谷甾醇、豆固醇、鞣花酸、天竺葵素和矮牵牛素,共鉴定出ESR1、VEGFA、PTGS2、HSP90AA1、CASP3等38个关键靶点和枢纽基因。分子对接结果证实豆固醇和胱天蛋白酶3(CASP3)是相关最密切的靶点。GO富集分析显示,参与的生物学过程主要包括药物反应、凋亡过程的正向调控和基因表达双向调控等。KEGG通路分析揭示了与癌症、炎症及感染相关疾病相关的通路的参与。研究结果提供了支持性证据,表明β-谷甾醇、豆固醇、鞣花酸、天竺葵素和矮牵牛素代表TAFM的关键生物活性成分,通过调节雌激素受体α(ESR1)、血管内皮生长因子A(VEGFA)、前列腺素-内过氧化物合酶2(PTGS2)、热休克蛋白90α(HSP90AA1)和CASP3在治疗乳腺癌中表现出抗乳腺癌活性。
摘要 — 使用结构或功能连接映射人脑的连接组已成为神经影像分析最普遍的范例之一。最近,受几何深度学习启发的图神经网络 (GNN) 因其对复杂网络数据建模的强大功能而引起了广泛关注。尽管它们在许多领域都表现出色,但尚未系统地研究如何设计有效的 GNN 进行脑网络分析。为了弥补这一差距,我们提出了 BrainGB,这是使用 GNN 进行脑网络分析的基准。BrainGB 通过 (1) 总结功能和结构神经影像模式的脑网络构建流程和 (2) 模块化 GNN 设计的实现来标准化该过程。我们对跨队列和模态的数据集进行了广泛的实验,并推荐了一套在脑网络上有效 GNN 设计的通用方法。为了支持基于 GNN 的脑网络分析的开放和可重复研究,我们在 https://braingb.us 上托管了 BrainGB 网站,其中包含模型、教程、示例以及开箱即用的 Python 包。我们希望这项工作能够提供有用的经验证据,并为未来在这个新颖且有前途的方向的研究提供见解。索引术语 — 脑网络分析、GNN、神经成像的几何深度学习、数据集、基准
摘要 — 使用结构或功能连接来映射人脑的连接组已成为神经成像分析最普遍的范例之一。最近,受几何深度学习启发的图神经网络 (GNN) 因其对复杂网络数据建模的强大功能而引起了广泛关注。尽管它们在许多领域都表现出色,但尚未系统地研究如何设计有效的 GNN 进行脑网络分析。为了弥补这一差距,我们提出了 BrainGB,这是使用 GNN 进行脑网络分析的基准。BrainGB 通过 (1) 总结功能和结构神经成像模式的脑网络构建流程和 (2) 模块化 GNN 设计的实现来标准化该过程。我们对跨队列和模态的数据集进行了广泛的实验,并推荐了一套在脑网络上有效 GNN 设计的通用方法。为了支持基于 GNN 的脑网络分析的开放和可重复研究,我们在 https://braingb.us 上托管了 BrainGB 网站,其中包含模型、教程、示例以及开箱即用的 Python 包。我们希望这项工作能够提供有用的实证证据,并为这一新颖且有前景的方向的未来研究提供见解。
摘要 —帕金森病 (PD) 是最常见的神经系统疾病之一,长期以来一直是公共卫生临床诊断和科学理解方面的挑战。最近,人们对脑网络分析的兴趣激增,这有助于广泛了解大脑功能并早期发现神经系统疾病。可以构建具有不同感兴趣区域 (ROI) 连接模式的多视图脑网络,以反映脑连接概况的不同和互补视角。然而,这种多视图脑网络的提取依赖于多种神经成像模态的可用性和繁重的数据预处理,这通常会导致任一视图中数据严重缺失。跨视图缺失问题阻碍了多视图表示学习和下游分析的实用性。在这项工作中,我们提出了跨视图脑网络生成的新问题,并提出了 CroGen,这是一种图形生成模型,当仅给出一个视图时,它可以生成缺失的视图。具体来说,GroGen 利用了同一个体脑网络不同视图之间的潜在相关性。此外,我们设计了一个预训练方案,以充分利用仅具有单一脑网络视图的标记个体。对现实生活中的帕金森病进展标志物倡议 (PPMI) 队列进行的大量实验证明了 CroGen 在跨视图生成任务和下游 PD 分类方面都比基线更有效。索引术语 — 多视图网络分析、跨视图网络生成、基于脑网络的疾病分类
摘要 — 使用结构或功能连接来映射人脑的连接组已成为神经成像分析最普遍的范例之一。最近,受几何深度学习启发的图神经网络 (GNN) 因其对复杂网络数据建模的强大功能而引起了广泛关注。尽管它们在许多领域都表现出色,但尚未系统地研究如何设计有效的 GNN 进行脑网络分析。为了弥补这一差距,我们提出了 BrainGB,这是使用 GNN 进行脑网络分析的基准。BrainGB 通过 (1) 总结功能和结构神经成像模式的脑网络构建流程和 (2) 模块化 GNN 设计的实现来标准化该过程。我们对跨队列和模态的数据集进行了广泛的实验,并推荐了一套在脑网络上有效 GNN 设计的通用方法。为了支持基于 GNN 的脑网络分析的开放和可重复研究,我们在 https://braingb.us 上托管了 BrainGB 网站,其中包含模型、教程、示例以及开箱即用的 Python 包。我们希望这项工作能够提供有用的实证证据,并为这一新颖且有前景的方向的未来研究提供见解。
伊莎贝尔·古德女士 网络空间方法论和任务保证部门负责人 伊莎贝尔·古德女士目前担任 DEVCOM 分析中心网络实验和分析部门的四位部门负责人之一。1990 年,她在漏洞分析实验室开始了她的公务员生涯,该实验室后来重组为陆军研究实验室 (ARL) 的一部分。古德女士领导了多个地雷/反地雷项目,此外还负责一个涉及红外诱饵的特殊项目。她的工作成果发表在 NDIA 地面战车生存能力研讨会、老乌鸦协会联合电子战会议和国际光学和光子学学会的论文集上。 1998 年,Goode 女士接受了横向任务,担任位于亚利桑那州尤马市尤马试验场的 ATEC 测试官,在那里她为弹药和武器部门开展了高知名度项目,到 2000 年,她被提升为炮兵和特殊项目部门负责人,例如 M777 轻型榴弹炮、M109 圣骑士和 M982 圣剑制导炮弹。2016 年,Goode 女士重返 ARL,担任网络电子保护部门部门负责人,至今她在 DEVCOM 分析中心担任该职务。除了部门负责人职责外,Goode 女士还领导其部门的人才管理计划和网络分析与评估中心(与 UTEP 合作),该中心为高需求的网络安全专业人员提供人才渠道。Goode 女士还担任与 UTEP、新墨西哥州立大学物理科学实验室和 SUGPIAT 国防集团签订的 3 份数百万美元合同的合同官代表。 Goode 女士获得的奖项包括西班牙裔工程师国家军事/专业成就奖(2004 年)、民事服务指挥官奖(2008 年)和民事服务成就奖章(2010 年)。Goode 女士获得了德克萨斯大学埃尔帕索分校电气和电子工程理学学士学位。她是陆军采购部队的成员,拥有测试和评估三级认证。她和孩子 James(22 岁)和 Jocelyn(16 岁)住在埃尔帕索。
背景:扩张型心肌病 (DCM) 是收缩性心力衰竭的主要原因之一,常具有遗传因素。DCM 发病和进展的分子机制仍不清楚。本研究旨在寻找新的诊断生物标志物,以辅助治疗和诊断 DCM。方法:探索基因表达综合 (GEO) 数据库,提取两个微阵列数据集 GSE120895 和 GSE17800,随后将它们合并为一个队列。在 DCM 组和对照组中分析差异表达基因,然后进行加权基因共表达网络分析以确定核心模块。通过基因显着性 (GS) 和模块成员资格 (MM) 值识别核心节点,并通过 Lasso 回归模型预测四个枢纽基因。在数据集 GSE19303 中进一步验证四个枢纽基因的表达水平和诊断价值。最后,确定了潜在的治疗药物和调节基因的上游分子。结果:绿松石模块是 DCM 的核心模块。鉴定出四个枢纽基因:GYPC(糖蛋白C)、MLF2(髓系白血病因子2)、COPS7A(COP9信号体亚基7A)和ARL2(ADP核糖基化因子类GTPase 2)。随后,通过实时定量PCR(qPCR)检测,枢纽基因在数据集和验证模型中的表达均存在显著差异。还鉴定出四种潜在的调节剂和七种化学物质。最后,成功进行了基因编码蛋白与小分子药物的分子对接模拟。结论:结果表明ARL2、MLF2、GYPC和COPS7A可能是DCM的潜在基因生物标志物。
摘要:疲劳驾驶是导致交通事故的重要因素之一,长期单调的驾驶易导致驾驶员注意力与警觉性下降,表现出疲劳效应。本文提出一种基于脑电图(EEG)源信号的有向脑网络角度揭示驾驶疲劳对大脑信息处理能力影响的方法。基于源分析得到的EEG信号电流源密度(CSD)数据,采用有向传递函数构建疲劳驾驶的有向脑网络。随着驾驶时间的增加,平均聚类系数和平均路径长度逐渐增加,而大部分节律的全局效率逐渐降低,表明深度驾驶疲劳增强了大脑局部信息的整合能力,同时削弱了大脑的整体能力。此外,因果流分析发现,清醒状态和驾驶疲劳状态下的电极分布存在明显差异,主要分布在前部和后部的几个区域,尤其是在θ节律下。研究还发现,在驾驶疲劳状态下,前部区域接收后部区域信息的能力明显变差。这些发现可能为揭示驾驶疲劳的潜在神经机制提供理论基础。
现代神经成像技术使我们能够将人脑构建为脑网络或连接体。捕捉脑网络的结构信息和层次模式对于理解脑功能和疾病状态至关重要。最近,图神经网络(GNN)良好的网络表征学习能力促使人们提出了相关的脑网络分析方法。具体而言,这些方法应用特征聚合和全局池化将脑网络实例转换为编码脑结构感应的向量表征,用于下游脑网络分析任务。然而,现有的基于 GNN 的方法往往忽略不同受试者的脑网络可能需要各种聚合迭代,并使用固定层数的 GNN 来学习所有脑网络。因此,如何充分释放 GNN 的潜力来促进脑网络分析仍然并非易事。在我们的工作中,提出了一种新颖的脑网络表征框架 BN-GNN 来解决这一难题,该框架为每个脑网络寻找最佳的 GNN 架构。具体来说,BN-GNN 采用深度强化学习 (DRL) 自动预测给定脑网络所需的最佳特征传播次数(反映在 GNN 层数中)。此外,BN-GNN 在八项脑网络疾病分析任务中提高了传统 GNN 性能的上限。© 2022 由 Elsevier Ltd. 出版。
摘要:肝内胆管癌 (ICC) 是一种恶性肿瘤,需要有效的全身治疗。基于基因表达谱的分析可以有效筛选潜在候选药物,作为 ICC 患者的新疗法。从基因表达综合 (GEO) 和癌症基因组图谱 (TCGA) 数据库下载了 ICC 和正常胆管上皮细胞的 RNA 表达谱。使用基因本体 (GO) 和京都基因和基因组百科全书 (KEGG) 数据库完成差异表达基因 (DEG) 的功能注释和富集通路分析。通过 WGCN 分析 (WGCNA) 构建加权基因共表达网络 (WGCN)。分析了 DEG 和共表达基因模块中的关键基因以生成蛋白质-蛋白质相互作用 (PPI) 网络。研究了筛选出的十大枢纽基因与ICC患者总生存期和无病生存期之间的关联。进行连接图(cMap)分析以利用枢纽基因识别ICC的潜在药物。从1287个GSE-DEG,8183个TCGA-DEG和1226个混合模块基因的重叠基因中共选出151个关键基因。分析蛋白质-蛋白质相互作用共发现10个感兴趣的枢纽基因(CTNNB1,SPP1,COL1A2,COL3A1,SMAD3,SRC,VCAN,PKLR,GART,MRPS5)。使用 cMap 筛选出对 ICC 具有潜在疗效的候选药物包括三种酪氨酸激酶抑制剂(达沙替尼、NVP-BHG712、替凡替尼)、两种大麻素受体激动剂(棕榈酰乙醇酰胺、花生四烯酸酰胺)、两种抗生素(莫西沙星、阿莫西林)、一种雌激素受体激动剂(左炔诺孕酮)、一种丝氨酸/苏氨酸蛋白激酶抑制剂(MK-2206)和其他小分子。通过网络和 PPI 分析,我们能够识别出治疗 ICC 的潜在药物。新基因表达谱的识别和相关药物筛选可能会加速识别治疗 ICC 的潜在新药物疗法。