Loading...
机构名称:
¥ 1.0

摘要 —帕金森病 (PD) 是最常见的神经系统疾病之一,长期以来一直是公共卫生临床诊断和科学理解方面的挑战。最近,人们对脑网络分析的兴趣激增,这有助于广泛了解大脑功能并早期发现神经系统疾病。可以构建具有不同感兴趣区域 (ROI) 连接模式的多视图脑网络,以反映脑连接概况的不同和互补视角。然而,这种多视图脑网络的提取依赖于多种神经成像模态的可用性和繁重的数据预处理,这通常会导致任一视图中数据严重缺失。跨视图缺失问题阻碍了多视图表示学习和下游分析的实用性。在这项工作中,我们提出了跨视图脑网络生成的新问题,并提出了 CroGen,这是一种图形生成模型,当仅给出一个视图时,它可以生成缺失的视图。具体来说,GroGen 利用了同一个体脑网络不同视图之间的潜在相关性。此外,我们设计了一个预训练方案,以充分利用仅具有单一脑网络视图的标记个体。对现实生活中的帕金森病进展标志物倡议 (PPMI) 队列进行的大量实验证明了 CroGen 在跨视图生成任务和下游 PD 分类方面都比基线更有效。索引术语 — 多视图网络分析、跨视图网络生成、基于脑网络的疾病分类

多视角脑网络分析与跨视角缺失网络生成

多视角脑网络分析与跨视角缺失网络生成PDF文件第1页

多视角脑网络分析与跨视角缺失网络生成PDF文件第2页

多视角脑网络分析与跨视角缺失网络生成PDF文件第3页

多视角脑网络分析与跨视角缺失网络生成PDF文件第4页

多视角脑网络分析与跨视角缺失网络生成PDF文件第5页