Loading...
机构名称:
¥ 4.0

准确的湍流预测非常昂贵,因为它需要一个限定时间的时间步骤来推进管理方程以解决快速发展的小规模动作。随着各种机器学习(ML)算法的最新开发,有限的时间预测成为减轻计算负担的有希望的选择之一。然而,对小规模动议的可靠预测具有挑战性。在这项研究中,开发了基于生成对抗网络(GAN)的数据驱动的ML框架的预测网络,用于快速预测湍流,使用相对较少的参数,高精度降至最小的湍流。特别是,我们使用直接的数值模拟数据在有限的交货时间内学习了二维(2-D)腐烂的湍流。开发的预测模型可以在有限的交货时间内准确地预测湍流场,最多是Eulerian积分时间尺度的一半,大规模动作保持相当相关。量表分解用于解释可预测性,具体取决于空间量表,并研究了潜在变量在歧视者网络中的作用。GAN在预测小规模的湍流中的良好性能归因于潜在变量的尺度选择和尺度相互作用能力。此外,通过利用预测网络作为替代模型,开发了一个名为ControlNet的控制模型,以识别驱动流量段的时间演变的扰动模型,以优化指定目标函数的方向。

使用生成对抗网络

使用生成对抗网络PDF文件第1页

使用生成对抗网络PDF文件第2页

使用生成对抗网络PDF文件第3页

使用生成对抗网络PDF文件第4页

使用生成对抗网络PDF文件第5页

相关文件推荐

2025 年
¥7.0
2021 年
¥1.0