摘要:许多研究人员对脑电信号进行解释、分析和分类,以用于脑机接口。尽管脑电信号采集方法有很多种,但最有趣的方法之一是运动想象信号。已经开发了许多不同的信号处理方法、机器学习和深度学习模型来对运动想象信号进行分类。其中,卷积神经网络模型通常比其他模型取得更好的效果。由于数据的大小和形状对于训练卷积神经网络模型和发现正确的关系非常重要,研究人员设计并试验了许多不同的输入形状结构。然而,在文献中还没有发现评估不同输入形状对模型性能和准确性影响的研究。在本研究中,研究了不同输入形状对脑电运动想象信号分类模型性能和准确性的影响,这在以前没有专门研究过。此外,没有使用信号预处理方法,因为在分类之前需要很长时间;而是开发了两个 CNN 模型,使用原始数据进行训练和分类。分类过程中使用了两个不同的数据集,BCI 竞赛 IV 2A 和 2B。对于不同的输入形状,2A 数据集获得了 53.03–89.29% 的分类准确率和 2–23 秒的 epoch 时间,2B 数据集获得了 64.84–84.94% 的分类准确率和 4–10 秒的 epoch 时间。这项研究表明,输入形状对分类性能有显著影响,当选择正确的输入形状并开发正确的 CNN 架构时,CNN 架构可以很好地完成特征提取和分类,而无需任何信号预处理。
糖尿病是一种无法治愈且致命的常见疾病。全世界数百万人患有糖尿病,这直接影响了人们的生活。早期诊断有助于减少糖尿病的影响并改善患者的生活质量,但通常在诊断之前患有糖尿病的人多年。可以通过在患者现有数据上应用机器学习方法来做早期诊断。以这种方式,人们可以在不参加葡萄糖筛查测试或任何血液检查的情况下迅速被诊断出。回答一个简单的问题集将足以确定一个人是糖尿病患者还是有糖尿病的风险。在拟议的研究中,通过机器学习技术进行糖尿病的测定。在此范围内,一种公开可用的糖尿病数据集,其中包括从520人那里收集的16个功能,用于创建预测模型。在数据集上单独执行了八种机器学习方法。使用10倍的交叉验证模式验证了每个模型的结果。基于精度指标,基于混乱矩阵的其他性能指标;还报道了精度,召回和F1得分。所有创建的模型均得出高精度得分。使用一种基本的机器学习技术,天真的贝叶斯,将最低精度得分评估为88.85%。最高准确率为99.04%,这是通过使用一维卷积神经网络模型获得的。设计的卷积神经网络模型还导致其他指标的性能得分最高,为100.00%,98.63%和99.31%的精度,召回和F1得分。这些发现表明,创建的1D CNN模型可以通过仅向患者提出几个问题来确定糖尿病患者。
大流行,我们可以通过投资防范措施来减少其影响。在这项研究中,我们提出了 RapiD AI:一个指导使用预训练神经网络模型作为大流行防范工具的框架,以使医疗保健系统在未来的大流行期间具有弹性并有效使用机器学习。RapiD AI 框架使我们能够使用大流行前几周收集的数据构建高性能机器学习模型,并提供一种方法来使模型适应当地人群和医疗保健需求。其动机是使医疗保健系统能够克服数据限制,这些限制阻碍了在新型疾病背景下开发有效的机器学习。我们以数字方式重现了 COVID-19 大流行的前 20 周,并通过领域自适应和归纳迁移实验演示了 RapiD AI 框架。我们 (i) 在代表英国牛津一般住院患者群体的大型电子健康记录数据集上对两个神经网络模型 (深度神经网络和 TabNet) 进行预训练,(ii) 使用疫情前几周的数据进行微调,以及 (iii) 通过在 COVID-19 患者的保留测试数据集上测试模型的性能来模拟本地部署。与仅在 COVID-19 数据上训练的 XGBoost 基准模型相比,我们的方法已显示平均相对/绝对增益为 4.92/4.21% AUC。此外,我们展示了通过聚类识别最有用的历史预训练样本的能力,以及通过归纳迁移扩展已部署模型的任务的能力,以满足无需访问大型历史预训练数据集的医疗保健系统的新兴需求。
摘要:基于运动想象的脑电解码是脑机接口技术的重要组成部分,是决定脑机接口整体性能的重要指标。由于运动想象脑电特征分析的复杂性,传统的分类模型严重依赖于信号预处理和特征设计阶段。深度学习中的端到端神经网络已经被应用于运动想象脑电的分类任务处理并显示出良好的效果。本研究采用卷积神经网络(CNN)和长短期记忆网络(LSTM)的组合从脑电信号中获取空间信息和时间相关性,跨层连接的使用减少了网络梯度弥散问题,增强了网络模型整体的稳定性。通过融合CNN、BiLSTM和ResNet(本研究中称为CLRNet)对运动想象脑电进行解码,在BCI Competition IV数据集2a上证明了该网络模型的有效性,融合CNN和BiLSTM的网络模型在四类运动想象模式分类中取得了87.0%的准确率。通过加入ResNet进行跨层连接,增强了网络稳定性,进一步提升了2.0%的分类准确率,达到89.0%的分类准确率。实验结果表明CLRNet在运动想象脑电数据集的解码方面具有良好的性能。本研究为脑机接口技术研究中的运动想象脑电解码提供了更好的解决方案。
* 共同第一作者 1 麻省理工学院麦戈文脑研究所脑与认知科学系,美国马萨诸塞州剑桥 2 麻省理工学院大脑、心智与机器中心,美国马萨诸塞州剑桥 3 哈佛大学语音与听觉生物科学与技术项目,美国马萨诸塞州剑桥 4 罗彻斯特大学医学中心,美国纽约州罗彻斯特 摘要 深度神经网络通常用作视觉系统的模型,但在听觉方面的研究较少。先前的研究提供了音频训练神经网络的例子,这些网络可以很好地预测听觉皮层 fMRI 反应,并显示出模型阶段与大脑区域之间的对应关系,但这些结果是否推广到其他神经网络模型尚不清楚。我们评估了公开可用的音频神经网络模型以及在四个不同任务上训练的内部模型的大脑模型对应关系。大多数测试模型的预测效果都优于之前的听觉皮层滤波器组模型,并表现出系统的模型-大脑对应关系:中间阶段最能预测初级听觉皮层,而深层阶段最能预测非初级皮层。然而,一些最先进的模型产生了明显更差的大脑预测。训练任务影响了特定皮质调节特性的预测质量,最好的整体预测来自在多个任务上训练的模型。结果表明任务优化在限制大脑表征方面的重要性。
摘要:为了诊断阿尔茨海默病 (AD),人们采用了磁共振成像等神经成像方法。深度学习 (DL) 在计算机视觉方面的最新进展进一步激发了对机器学习算法的研究。然而,这些算法的一些局限性,例如需要大量的训练图像和强大的计算机,仍然阻碍了基于机器学习的 AD 诊断的广泛使用。此外,大量的训练参数和繁重的计算使得 DL 系统难以与移动嵌入式设备(例如手机)集成。对于使用 DL 进行 AD 检测,目前大多数研究仅侧重于提高分类性能,而很少有研究获得更紧凑、复杂度更低、识别准确率相对较高的模型。为了解决这个问题并提高 DL 算法的效率,本文提出了一种用于 AD 分类的深度可分离卷积神经网络模型。本文使用深度可分离卷积 (DSC) 来代替传统的卷积。与传统神经网络相比,所提出的神经网络的参数和计算成本大大降低。与传统神经网络相比,所提出的神经网络的参数和计算成本显著降低。由于其低功耗,所提出的模型特别适合嵌入移动设备。实验结果表明,基于 OASIS 磁共振成像数据集的 DSC 算法在 AD 检测方面非常成功。此外,本文还采用了迁移学习来提高模型性能。使用两个训练有素的复杂网络模型 AlexNet 和 GoogLeNet 进行迁移学习,平均分类率分别为 91.40%、93.02%,功耗更低。
“学习优化”或 L2O 是一种生成或改进优化算法的方法。由此产生的算法通常能够有效地解决一组目标优化问题。L2O 在信号处理、图像处理和其他逆问题、整数和组合优化以及最优控制的应用方面取得了可喜的进展,并在许多个别类型的问题中取得了显著的成功。本演讲介绍了 L2O 的背景和动机,并简要概述了最近出现的不同类型的 L2O 方法,包括深度神经网络模型、基于传统优化方法的模型以及将它们结合起来的各种方法。我们将讨论如何训练参数并确保正确的收敛结果。
在随机推理模型中,系统可以从一个给定状态转换到多个状态,这样从给定状态转换到下一个状态的概率之和严格为 1。另一方面,在模糊推理系统中,从给定状态转换到下一个状态的成员值之和可能大于或等于 1。信念网络模型会更新分配给网络中嵌入事实的随机/模糊信念,直到达到平衡条件,此后信念将不再发生变化。最近,模糊工具和技术已应用于称为模糊 Petri 网的专门信念网络,以通过统一方法处理数据的不精确性和知识的不确定性
在日益占主导地位的知识经济中,计算卓越性是竞争力的一大驱动力。在过去十年中,计算人工智能 (AI) 在经济发展和市场竞争力中的作用已从小到大。其经济重要性怎么强调都不为过——在源自加拿大的神经网络模型训练创新的推动下,巨大的变化颠覆了许多领域的市场部门领导地位,包括信息搜索、语音识别、自然语言理解、导航助手、自动驾驶汽车、诉讼准备、制造资格等。对于加拿大经济来说,人工智能在高级研究计算 (ARC) 提供的学术计算创新与工业竞争力的良性循环中发挥重要作用至关重要。