庆祝自己和他人的另一种方式是提名某人获得奖项。全年有几次颁奖活动(同行、罗伯特·H·戈达德、机构荣誉等)。有时我们只是忘记或没有花时间表彰他人或自己。花时间表彰某人在工作场所的贡献会向获奖者和社区传达强有力的信息。还要知道,提名自己或要求提名您获得奖项是可以的。当您为工作场所做出重大贡献时,重要的是通过自我提名或与您的主管或同事交谈来庆祝自己,要求他们提名您获得奖项。仅仅被提名获得奖项就向个人传达了他们个人或集体与团体所做的事很重要
Jer-Chyi Liou (NASA) NASA 轨道碎片计划办公室 (ODPO) 是 NASA 总部安全与任务保障办公室 (OSMA) 的一个授权计划。NASA 轨道碎片缓解程序要求 NPR 8715.6E 规定了 ODPO 的角色和职责,包括 (1) 现场以及通过雷达、望远镜和实验室实验收集轨道碎片测量数据,(2) 开发轨道碎片模型和任务支持工具,(3) 评估和记录 NASA 任务是否符合轨道碎片缓解要求,以及 (4) 为美国和国际社会的轨道碎片缓解政策和最佳实践做出贡献。ODPO 的首要任务是表征低地球轨道 (LEO) 中毫米级小型轨道碎片的风险。毫米级轨道碎片对于在 600 至 1000 公里高度运行的航天器而言,是终止任务的最高风险,数百架航天器在此高度运行,但缺乏对环境中如此小碎片的直接测量数据。需要毫米级轨道碎片的直接测量数据来支持制定和实施具有成本效益的防护措施,以确保未来太空任务的安全运行。2018 年美国国家空间交通管理政策、2021 年美国国家轨道碎片研究与发展计划和 2022 年美国国家轨道碎片实施计划也认识到需要解决低地球轨道这一关键数据缺口。自 2020 年代初以来,ODPO 一直在探索各种用于现场测量小型轨道碎片的粒子探测技术。这些努力的成果是与 JAXA 合作研发的多层声学和导电网格传感器 (MACS)。 MACS 结合了几种简单的检测原理,以最大限度地利用从每次碎片检测中提取的信息,从而为对低地球轨道上小型轨道碎片群体的定义进行有意义的改进提供数据。MACS 是一个四层传感系统。第一层是 JAXA 的导电网格薄膜空间碎片监测器 (SDM),第二层和第三层是相同的 Kapton 薄膜,最后一层是低密度合成泡沫板。每层都连接了多个声学传感器,以测量撞击时间和位置。泡沫板上的声学传感器也用于测量撞击动能。所有四层数据的组合提供了有关每个撞击轨道碎片颗粒的大小、质量、密度、撞击时间、速度和方向的信息。自 2017 年以来,ODPO 已与 JAXA 建立了多项代理协议,以开发、测试和优化 MACS 的设计。2022 年确定了在未来的 HTV-X 飞行中对 MACS 进行技术演示的机会,并于 2023 年确认。MACS HTV-X3 技术演示任务由 OSMA、NASA 科学任务理事会赞助,以及国际空间站 (ISS) 计划。HTV-X3 离开国际空间站后的技术演示阶段的任务概况尚未最终确定,但 HTV-X3 可能达到 500 公里的最大高度,持续时间长达 18 个月。HTV-X3 演示为充分完善 MACS 技术准备水平并展示其小碎片探测能力提供了绝佳机会,这将为 ODPO 在不久的将来开展一项任务以解决 600 公里高度以上关键的毫米级轨道碎片数据缺口铺平道路。
火星是太阳系中与地球最相似的行星。火星的自转周期为 24 小时 37 分钟,其相对于轨道平面的倾斜角约为 64.8 度,而地球的倾斜角为 66.5 度。因此,火星上的季节变化与地球相同。通过望远镜,可以观察到火星表面的白色极冠。随着夏季的临近,极冠开始融化,火星表面随着极地与赤道距离的增加而变暗。地球观测显示,火星表面附近的气压约为 0.1-0.3 个大气压,中午时分,赤道附近的温度约为 25 摄氏度。由于火星大气层非常稀薄,火星表面的日温差可达 50 摄氏度。这比地球高海拔山区的气温要高一些,因为那里的空气很稀薄。自然,这些相似之处提出了火星上是否存在生命的问题。
摘要。地球表面和大气之间的微量气体交换对大气成分有重大影响。空气涡流协方差可以量化局部到区域尺度(1-1000 公里)的表面通量,可能有助于弥合自上而下和自下而上的通量估计之间的差距,并为生物物理和生物地球化学过程提供新的见解。美国宇航局碳空气通量实验 (CARAFE) 利用美国宇航局 C-23 Sherpa 飞机和一套商用和定制仪器,以高空间分辨率获取二氧化碳、甲烷、显热和潜热的通量。本文介绍了 CARAFE 有效载荷的关键组件,包括气象、温室气体、水蒸气和表面成像系统。连续小波变换沿飞机飞行轨迹提供空间分辨的通量。深入讨论了通量分析方法,特别强调了不确定性的量化。 导出的表面通量中典型的不确定性为 40-90%(标称分辨率为 2 公里)或 16-35%(全程平均,通常为 30-40 公里)。 CARAFE 已于 2016 年和 2017 年在美国东部成功执行了两次任务,量化了森林、农田、湿地和水域的通量。 这些活动的初步结果被呈现出来,以突出该系统的性能。
尘埃环境分类:NASA 月球尘埃缓解战略的最后一部分是制定尘埃环境分类,以便生成需求和系统工程与集成功能。尘埃环境分类将根据各种尘埃负荷参数进行组织,例如表面尘埃负荷、体积尘埃负荷和尘埃速度。分类将定义测试协议和指标。根据分类中描述的预定义协议进行测试还将提高对给定系统需要额外尘埃缓解策略的认识。
Prof. YAP, Maurice 叶健雄教授 K.B.Woo Family Endowed Professorship in Optometry 胡赓佩家族眼科视光学教授席Chair Professor School of Optometry 眼科视光学院讲座教授Dean Faculty of Health and Social Sciences 医疗及社会科学院院长Tel 电话: 2766 4510 Email 电邮: maurice.yap @polyu.edu.hk
• 制导、导航和控制 • 卫星星座遥感 • 轨迹设计和优化工具 • 任务操作软件 • 项目成本估算 • 辐射分析 • 图形渲染
o Ni % o Ti % o 元素 3 % o 元素 4 % o 热处理 1 次 o 热处理 1 温度 o 热处理 2 次 o 热处理 2 温度 o 热处理 3 次 o 热处理 3 温度 o 较低循环温度 o 较高循环温度 o 奥氏体起始温度 o 奥氏体结束温度 o 马氏体起始温度 o 马氏体结束温度
差距分析委员会发现,通过在各种战略地球和太阳轨道上扩展空间气象观测站网络,我们可以利用现有技术显著提高我们的空间天气预报能力。空间环境是一个系统的系统,也需要采用系统的方法来从主要观测站收集并发验证的测量数据、处理数据、驱动预测模型,并将产品交付给空间天气最终用户,所有这些都需要很少的延迟时间。需要制定一项长期战略来缩小观测差距,包括让联邦机构相互合作,并与商业卫星运营商和国际机构合作。还应利用新技术和能力,例如扩大运载火箭选项和共乘机会;小型卫星技术;低延迟全球卫星通信网络;开放访问数据集以及云计算和机器学习能力;以及在扩散的低地球轨道 (LEO) 及更远的地方托管有效载荷。
NASA STI 计划在该机构首席信息官的主持下运作。它收集、组织、归档和传播 NASA 的 STI。NASA STI 计划提供对 NASA 航空航天数据库及其公共接口 NASA 技术报告服务器的访问,从而提供世界上最大的航空航天科学 STI 集合之一。结果在非 NASA 渠道和 NASA 的 NASA STI 报告系列中发布,其中包括以下报告类型: • 技术出版物。已完成研究或重要研究阶段的报告,介绍 NASA 计划的结果并包含大量数据或理论分析。包括被认为具有持续参考价值的重要科学和技术数据和信息的汇编。与同行评审的正式专业论文相对应的 NASA 报告,但对手稿长度和图形展示范围的限制没有那么严格。• 技术备忘录。初步或具有专门兴趣的科学和技术发现,例如快速发布报告、工作文件和包含最少注释的参考书目。不包含广泛的分析。• 承包商报告。NASA 赞助的承包商和受助者的科学和技术发现。