摘要。BIKE(位翻转密钥封装)是 NIST 后量子密码标准化过程中一个很有前途的候选方案。它是一种基于代码的密码系统,具有定义简单、底层安全性易于理解和性能优异等特点。该密码系统中最关键的步骤是纠正 QC-MDPC 线性码中的错误。BIKE 团队在标准化过程的第 1 轮和第 2 轮中提出了用于此步骤的位翻转解码器变体。在本文中,我们提出了一种对硬件实现更友好的替代解码器,从而实现与文献相当的延迟区域性能,同时引入了电源侧通道弹性。我们还表明,我们的设计可以使用很少的通用逻辑构建块来加速所有密钥生成、封装和解封装操作。
已经对用于调整磁共振成像(MRI)参数的技术进行了研究,以获取具有更好特征的图像。在这项研究中,我们旨在通过使用用户友好的MRILAB模拟程序来调整翻转角度,激发次数(NEX)和带宽(BW)来确认人脑T2加权图像的最佳参数值。我们还考虑了噪声水平和相似性评估参数。根据结果,随着NEX的增加和BW的降低为90°,噪声水平和相似性评估得到了改善,而它们的最佳状态不太最佳,而不是90°的翻转角度。发现过多的参数变化会在此类图像中引起额外的噪声和伪影,从而导致图像清晰度恶化。因此,我们确认设置适当的参数在磁共振图像采集中至关重要。
摘要 — 联邦学习是一种使多个设备能够共同训练共享模型而不共享原始数据的方法,从而保护数据隐私。然而,联邦学习系统在训练和更新阶段容易受到数据中毒攻击。使用 CIC 和 UNSW 数据集,在十分之一的客户端的 FL 模型上测试了三种数据中毒攻击 - 标签翻转、特征中毒和 VagueGAN。对于标签翻转,我们随机修改良性数据的标签;对于特征中毒,我们改变随机森林技术识别出的具有高度影响力的特征;对于 VagueGAN,我们使用生成对抗网络生成对抗样本。对抗样本只占每个数据集的一小部分。在本研究中,我们改变了攻击者修改数据集的百分比,以观察它们对客户端和服务器端的影响。实验结果表明,标签翻转和 VagueGAN 攻击不会显著影响服务器准确性,因为它们很容易被服务器检测到。相比之下,特征中毒攻击会巧妙地削弱模型性能,同时保持较高的准确率和攻击成功率,凸显了其隐蔽性和有效性。因此,特征中毒攻击可以操纵服务器,而不会显著降低模型准确率,这凸显了联邦学习系统面对此类复杂攻击的脆弱性。为了缓解这些漏洞,我们探索了一种名为“随机深度特征选择”的最新防御方法,该方法在训练期间将服务器特征随机化为不同大小(例如 50 和 400)。事实证明,该策略在最大程度地降低此类攻击的影响(尤其是在特征中毒方面)方面非常有效。
• 焊接现场压缩法兰,以减少有限空间应用中的无金属区 • 重型翻转聚碳酸酯控制面板盖,提供额外保护 • LED 警报/故障灯和喇叭 • 提供各种集成输送机 • 为现有输送机安装提供输送机适配器套件
航天飞机在上升过程中面临着许多飞行器控制挑战,轨道器在轨道和下降过程中也面临着许多挑战。这些挑战需要创新,例如电传操纵、稳健系统的计算机冗余、开环主发动机控制和导航辅助。这些工具和概念带来了突破性技术,这些技术目前正用于其他太空计划,并将用于未来的太空计划。其他政府机构以及商业和学术机构也在使用这些分析工具。NASA 在开发航天飞机主发动机仪器方面面临着重大挑战 - 发动机在当时前所未有的速度、压力、振动和温度下运行。NASA 开发了支持航天飞机导航和飞行检查的独特仪器和软件。此外,航天飞机上使用的通用计算机具有静态随机存取存储器,这容易受到存储器位错误或宇宙射线位翻转的影响。这些位翻转带来了巨大的挑战,因为它们有可能对车辆控制造成灾难性的影响。
晶体管需要低电源电压,因此不幸的是,电路节点上的临界电荷会降低。因此,在航空航天应用中,电路容易受到甚至低辐射能量引起软误差的颗粒的撞击[1]。辐射颗粒包括质子,中子,α颗粒,重离子,电子等[2]。粒子的碰撞会产生许多电子和孔,这些电子和孔可以在受影响的晶体管的排水口收集,从而导致瞬态电压干扰。在顺序/存储电路中,存储节点的值可以暂时翻转(如果可以恢复)或长时间翻转(如果它是无法恢复的,并且需要在下一个时钟周期中需要刷新),从而导致单个事件沮丧(SEU)[3]。请注意,单节点误(SNU)是一种类型的SEU。在组合/逻辑电路中,逻辑门的输出值可能会受到干扰,输出单个事件瞬态(set)脉冲[4]。SEU和集合是典型的软错误,在最坏情况下会导致电路失败甚至系统崩溃。因此,航空应用非常需要软误差。
由于对电磁辐射的敏感性增加,存储设备的缩小增加了系统故障的概率。关键存储系统采用容错技术(如纠错码 (ECC))来缓解这些故障。这项工作探索了采用线积码 (LPC)(一种类似产品的 ECC)的纠错技术和算法。我们建议使用单纠错算法 (AlgSE) 和双纠错算法 (AlgDE) 来解码 LPC 码字。这两种算法都探索了 LPC 特性以获得更高的解码效率。AlgSE 是使用与校正启发式相关的迭代技术实现的,而 AlgDE 是一种创新的提议,它允许通过推断错误来提高校正效果。AlgDE 与 AlgSE 一起使用时可以显著提高 LPC 解码器的效率。在详尽的测试中,它可以纠正最多三个位翻转的 100% 的情况,以及分别 98% 和 92% 的四次和五次翻转的情况。此外,我们还提出了纠错潜力与实施纠错算法的成本之间的权衡。
利用固有自旋轨道相互作用的单自旋操控是一种无需人工磁结构即可旋转自旋的技术 [1],这在半导体传输实验和量子信息技术早期至关重要。在本次演讲中,我们将介绍利用耦合多量子点中出现的自旋翻转隧穿项加速电偶极自旋共振的结果。首先,我们介绍与双量子点中的自旋翻转相关的单自旋隧穿 [2]。接下来,我们将讨论以自旋相干方式利用此效应的测量。通过在充分增加点间隧道耦合后将共振微波频率设置为磁自旋分裂,获得的 Rabi 振荡显示出增强的速度,这取决于微波幅度和点之间的能量失谐。双点中的这种自旋旋转概念扩展到三量子点,我们观察到由于扩展的电荷振荡而导致的更大加速
图 5:可能的两个量子比特预言机的示例[10],如果输入为(a)00(b)01(c)10 和(d)11,则翻转符号。量子比特标记如下:q(寄存器号)(寄存器中的量子比特位置)。
让我们退一步考虑最简单的经典纠错码——重复码。假设发送者想要向接收者传输单比特消息 0 或 1。但是,连接它们的通信信道很嘈杂,偶尔会翻转比特值。要使用重复码传输 0,发送者需要传输三个零:000;要传输 1,需要传输三个 1:111。原始传输的嘈杂版本被传送给接收者,其中部分(甚至全部)比特已被翻转为相反的值。接收者的任务是确定发送者传输了什么消息。假设比特翻转只是偶尔发生,那么接收者可以合理地假设发送者的预期消息是在嘈杂的接收版本中最常出现的比特值。这称为多数表决解码。整个过程确保即使传输中有一个错误,预期消息也能被正确接收。假设错误独立发生在传输的比特上