关闭原材料的回路流过循环经济,从而找到可持续的难治性解决方案是Rhi Magnesita的一个基本战略支柱。在过去的几年中,已经采取了重大努力将这种方法转化为枪支混合物。主要的挑战是实施大量的圆形原材料,同时将枪支混合物的主要特性保持在相同的水平,例如耐火性能,粘合性能和机械处理。通过在系统的开发过程中遵循这些标准,可以创建一种新的可持续枪支混音组合,而产品碳足迹最高为85%。在主要钢生产单元的强烈而全面的试验阶段,即电弧形炉,基本氧气炉和梯子,可以充分证明这一新的难治性概念。
人们经常要求使用建筑结构部件的耐火性能来预测或估计未经测试的结构的耐火性能。在某些情况下,有用的估计可能基于可用的数据。然而,在大多数情况下,最终结果气候的质量在很大程度上取决于评估人员对问题的经验和感觉。为了帮助更准确地做出此类估计,该局设计并建造了一个电子设备,用于进行必要的计算。对建筑物的各个部分进行了耐火测试,以确定建筑物在火灾影响下的适用性。虽然机械行为可能经常限制该结构在这方面的实用性,但通常情况下,热传输是决定其耐火能力的关键因素。此类测试 [1] 1 中使用的装置要求在炉内封闭结构中应用与标准火灾暴露相对应的时变温度函数。该程序还允许通过辐射和对流从样品未暴露部分发生热损失。这些条件使得使用分析方法解决传热方程变得不切实际。因此,使用一些高速近似方法来计算暴露于火中的结构的热行为似乎是可取的。人们考虑使用数字和传统模拟计算机,并取得了一定程度的成功,近似地解决了这些问题。然而,似乎使用热电路和电路之间的直接类比可能会在解决问题时提供更大的灵活性,并简化“编码”。该设备的构造与 Lawson & McGuire [2] 开发的设备有些相似。这直接利用了电气和热电路之间的类比,而不需要大量组装电子机械操作器或单元
安全建议 4.1 SR 25/2013:美国联邦航空局与欧洲航空安全局合作或协调,审查涵盖所有运输类飞机作为单一设计类别的单一、通用的 CFR14 防火认证标准,并为设计或改装为专用货机或货/客两用飞机的飞机货舱制定专门的防护认证标准,包括强制安装 E 类货舱的货机灭火系统。 4.2 SR 26/2013:要求美国联邦航空局和欧洲航空安全局为最大审定起飞质量超过 45,500 千克的货机运营商提供修改现有 E 类货舱的选择,通过美国联邦航空局或欧洲航空安全局建议的修改程序,通过使用主动灭火系统来控制 E 类货物火灾,而无需机组人员进入货舱。 4.3 SR 27/2013:FAA 与 EASA 合作或协调,强制要求根据 FAA 14CFR 或等效 EASA 认证要求认证的货机安装多源传感器 [MSS],通过检测 E 类货舱内的热辐射来检测火灾的早期发展,方法是安装多源传感器 [MSS],利用热检测过程结合烟雾/烟气采样。4.4 SR 28/2013:FAA 与 EASA 合作或协调,审查机组警报认证要求,以便通过视觉方式向机组人员指示火灾的具体位置。4.5 SR 29/2013:GCAA 建议 PHMSA 标准化电池包装规定,以与 ICAO 技术说明 [TI] 保持一致。要求是将美国 HMR 与国际民航组织关于锂电池危险品航空安全运输的 TI 完全协调一致。这包括纳入第 2 部分规定的质量管理规定;9.3.1 e。4.6 SR 30/2013:FAA 与 EASA 合作或协调,制定带有抑制系统、优异的耐热和耐火性能以及可承受抑制的弹性的容器标准-198