• 以经济环保的方式回收稀有金属并修复锂离子电池的阳极。预计到本世纪末,锂离子电池的产量将增长两倍。目前,只有不到 5% 的电池被回收利用。 • 光激活分子机器可以杀死“革兰氏阳性”细菌,这些细菌的厚细胞壁可以抵抗抗生素。这些分子具有高度选择性,不太可能引起广谱抗生素的副作用,广谱抗生素会不加区别地杀死“坏”细菌和“好”细菌,并导致耐药性。 • 开发了一种锂化涂层,可有效防止锂电池上形成枝晶,从而减少短路并延长电池寿命。 • 使用闪光焦耳加热生产氮化硼 (BN) 薄片,这是一种备受追捧的 2D 材料。BN 通常用作润滑剂、添加到化妆品中的软化剂或陶瓷和金属化合物的添加剂,以提高耐热性。它还被用作催化剂来破坏 PFAS,CDC 声称 PFAS 对人体健康构成威胁。• 在醋酸钾存在下加热塑料废物,产生具有纳米级孔隙的颗粒,这些颗粒可以捕获二氧化碳分子。用这种材料制成的过滤器可以捕获来自发电厂烟囱等的二氧化碳排放,成本不到竞争方法的四分之一。
1.0简介Aramid纤维(AFS)是一类高性能有机聚合物纤维,以其出色的机械性能,耐热性和化学稳定性而闻名。自1964年发明以来,AFS已成为从航空航天和防御到运动器材和电绝缘材料的广泛应用中必不可少的材料。[1-5]芳香虫的独特特性归因于其分子结构,该结构由酰胺基团相连的芳族环组成。在旋转过程中实现的高度分子取向也沿纤维轴赋予强度和刚度。商业AFS主要基于两种聚合物 - 聚(P-phenylene terephalamide)(PPTA)(PPTA),销售为Kevlar和Twaron,以及聚(M-phenylene isophthalamide)(MPIA)(MPIA),以商业上称为Nomex。近年来还看到了其他特种弧菌的出现,例如聚(P-苯基苯甲甲行唑)(PBO)和具有增强的热耐药性的杂环芳烃[6-9]。在过去的几十年中,已经采用了一系列干燥和湿的旋转技术来生产商业AF。旋转过程的选择取决于聚合物类型,所需的纤维特性和过程经济学。在本综述中提供了不同旋转方法以及芳香旋转技术的关键发展。最近的制造芳香
通过使用4,4-4-氧基二苯胺(ODA)作为二氨基单体,4,4' - (六氟异丙胺)双性恋(Hexafluoroorotopylidene),通过常规的两步法制备了两种具有不同Dianhydride比率的氟化的聚合聚合物膜,以不同的苯二氢基比的比率制备了不同的Dianhydride。赤道(ODPA)和3,3',4,4'-双苯基四羧酸苯二氢酯(BPDA)为N,N-二甲基乙酰氨酰胺中的Dianhydride单体。随着6FDA在Dianhydride的比例中的增加,聚酰亚胺膜的拉伸强度显示出趋势下降。这项工作提供了一部高性能电影。在800°C下的质量保留率高于50%。两膜的玻璃过渡温度为260°C和275°C。两者的存储模量为1500 MPa和1250 MPa。损失模量为218.70 MPa和120.74 MPa。电影的透射率为71.43%。在紫外线的可见区域可显着改善氟化的聚合膜的透射率,这表明成功制备具有高透射率,高抗热量,高耐热性和高储存模量的聚酰亚胺膜成功制备。它在灵活显示领域中具有出色的应用程序前景。
物理材料科学的优先领域之一是开发基于耐热聚合物的新型聚合物复合材料。聚酰亚胺在耐热聚合物领域占据领先地位。目前,使用各种基于聚酰亚胺的材料。聚酰亚胺泡沫 ( PIF ) 广泛用于微电子领域,以生产介电常数非常低的电介质、传感器保护涂层、用于补偿振动载荷的应力缓冲器以及许多集成电路元件;由于其高热稳定性和耐热性以及防火性,它们还在航空航天中用作隔热、吸音和减震材料 [ 1 ] 。存在几种获取 PIF 的基本技术。最常见的过程是基于四羧酸酯与二胺的化学反应,其结果是形成相关的预聚物 [ 2 ] 。上述 PIF 生产方法的替代方法可能是在热处理聚酰胺酸 (PAA) 的水溶性铵盐的冻干物的过程中形成多孔聚酰亚胺结构的技术 [ 3 ] 。其独特之处在于无需使用表面活性剂或其他添加剂即可获得所需形状的各向同性泡沫材料,因为多孔结构是由于溶液冻结并随后水升华而形成的。然而,在这种情况下,泡沫材料性能的调节仅限于选择 PAA 盐溶液的浓度及其冻结条件。此外,控制性能的可能方法之一是引入各种填料 [ 4 ] 。在改善聚酰亚胺的热性能和机械性能方面特别令人感兴趣的是层状铝硅酸盐纳米颗粒 [ 5 ] 。在广泛使用的铝硅酸盐纳米颗粒中,有蒙脱石,其特点是可用性和高度各向异性。因此,本研究的目的是
在热浪来袭期间,连续几天气温都超过 40°C,James 努力在通风不良、没有空调或电风扇的病房中保持凉爽(方框 1)。由于夜间高温影响睡眠,他喝了更多酒,并服用了更多奥氮平。第二天,在沿着阳光充足的路走回母亲家时,James 感到极度疲劳、恶心和头晕。一位邻居发现 James 疲惫不堪、心烦意乱,便将他带到附近的全科诊所。一坐进有空调的候诊室,在得到冷水和冰毛巾后,他的病情迅速好转。全科医生 (GP) 诊断为热衰竭,并怀疑是早期锂中毒,因为他出现了新发手部震颤。James 被指示补水并停止服用锂,直到紧急血清水平可用。James 表示他从未接受过有关预防热应激的教育,现在全科医生提供了书面信息。本病例表明,在重度精神疾病患者中,与高温相关的发病率和死亡率的风险因素往往是累积的(例如,药物损害了耐热性、合并症物质使用、肥胖、获得优质住房的机会减少)。在气候变暖的情况下,全科医生可以在教育患者预防和管理与高温相关的疾病方面发挥重要作用,特别是
金属有机框架(MOF)是结晶材料,具有与金属中心结合的有机连接。他们提供了一种新的,有希望的吸附剂,其特征是它们的大量表面积,多样化的高质量结构和化学稳定性。自1995年发现以来(Yaghi等,1995),已经报道了超过20,000种MOF化合物的合成(Deng等,2012; Maurin等,2017),导致它们在吸附和催化行业中广泛利用。在其中,氨基功能化的MOF,具有锆为中央体的UIO-66型,由于其酸和基础耐药性和特殊的结构稳定性,已成为重金属离子吸附的潜在候选。随着MOF的应用越来越普遍,已经探索了各种制备方法。在整个制造过程中,诸如协调环境,协调连接,金属中心离子和化学配体等因素显着影响MOF的结构(Wang等,2013)。几个反应变量,包括温度,金属离子与有机配体的摩尔比,溶剂,反应系统的pH,成分浓度和反应时间,已被确定为最终的MOF结构和特性的关键决定因素(Deng等,2015)。MOF的设计和控制比传统的多孔材料更简单,因为它们可以在受控和轻度条件下合成,从而导致具有增强表面积,渗透率,耐热性和电气特性的材料(He等,2017; Huo等,2017)。重型MOF材料在合成方法中提供多功能性,并具有重金属离子的出色吸附性能,使其在实际应用中很有价值。
人们对基因编辑农场动物的兴趣日益浓厚。一些改变可能有利于动物福利(例如,提高携带“slick”基因的牛的耐热性)、环境(例如,减少携带诱导性多能干细胞的牛的甲烷排放量)和生产力(例如,携带“双肌”基因的牛的体重增加更多)。关于此类修改可接受性的现有学术研究已使用多种方法来识别影响该技术伦理和治理的社会因素。我们认为,整合历史方法(特别是来自相对较新且蓬勃发展的动物历史领域)提供了一种“预期知识”,可以帮助指导有关该主题的讨论。我们对英语、德语和西班牙语的动物历史文献进行了系统回顾,以确定政治、科学、经济、社会和文化因素对此类技术的发展和接受的影响。我们在过去关于农场动物的辩论中发现了类似的结构和断层线,为当代关于基因编辑的讨论提供了见解。这些类似的结构包括肉类加工商的市场力量或畜牧业中的种族化规则,以及断层线,例如国家和公民在食品系统方向上的分歧。强调这些相似之处表明外部力量如何影响并将继续影响对应用于农场动物的新兴生物技术的接受或拒绝。
摘要:将苯并环丁烯改性倍半硅氧烷(BCB-POSS)和二乙烯基四甲基二硅氧烷-双苯并环丁烯(DVS-BCB)预聚物分别引入到由1-甲基-1-(4-苯并环丁烯基)硅环丁烷(4-MSCBBCB)和1-甲基-1-苯基硅环丁烷(1-MPSCB)聚合而成的含苯并环丁烯(BCB)单元的基质树脂P(4-MB-co-1-MP)中,制备出低介电常数(低k)硅氧烷/碳硅烷杂化苯并环丁烯树脂复合材料P(4-MB-co-1-MP)/BCB-POSS和P(4-MB-co-1-MP)/DVS-BCB。通过傅里叶变换红外光谱(FTIR)和差示扫描量热法(DSC)研究了复合材料的固化过程。利用阻抗分析仪和热重分析仪(TGA)研究了不同比例的BCB-POSS和DVS-BCB对复合材料介电性能和耐热性的影响。复合材料的热固化可以通过BCB-POSS或DVS-BCB的BCB四元环与P(4-MB-co-1-MP)的BCB四元环的开环聚合(ROP)进行。随着BCB-POSS比例增加至30%,P(4-MB-co-1-MP)/BCB-POSS复合材料的5%热失重温度(T 5% )明显升高,但由于POSS中引入了纳米孔,介电常数(k)降低。对于P(4-MB-co-1-MP)/DVS-BCB复合材料,随着DVS-BCB比例的增加,T 5%和k略有升高。以上结果表明,BCB-POSS 比传统填料具有优势,可同时提高热稳定性并降低 k。
UF 120LA:下一代高可靠性、100% 助焊剂残留物兼容且可返工的底部填充材料 2025 年 2 月 3 日(纽约州奥尔巴尼)——YINCAE 推出了 UF 120LA,这是一款专为先进电子封装而设计的高纯度液态环氧底部填充材料。UF 120LA 具有出色的 20μ 间隙流动性,可免除清洁工艺,降低成本和环境影响,同时确保在 BGA、倒装芯片、WLCSP 和多芯片模块等应用中的卓越性能。UF 120LA 可承受 5x260°C 回流循环而不会发生焊点变形,优于需要清洁的竞争对手。其在较低温度下的快速固化提高了生产效率,使其成为存储卡、芯片载体和混合电路的理想选择。UF 120LA 卓越的耐热性和机械耐久性使制造商能够开发更紧凑、更可靠、更高性能的设备,加速小型化、边缘计算和物联网连接的趋势。这项进步可以提高任务关键型应用的生产效率,例如 5G 和 6G 基础设施、自动驾驶汽车、航空航天系统和可穿戴技术,这些应用的可靠性和使用寿命至关重要。此外,通过简化制造工作流程,UF 120LA 可以缩短消费电子产品的上市时间,从而有可能重塑供应链效率并为规模经济创造新的机会。从长远来看,这项技术的广泛采用可能会彻底改变半导体封装格局,为越来越复杂的电子设备铺平道路,这些电子设备更轻、更高效、在极端环境下更具弹性。主要优势:
热应激是影响全球小麦产生和生产力的关键因素。在这项研究中,在500种研究的种质系中,分析了126种小麦基因型在十二个不同的环境条件下生长的小麦基因型。使用五个生化参数,包括谷物蛋白含量(GPC),谷物淀粉糖含量(GAC),谷物总溶解糖(TSS),晶粒铁(FE)和六含锌(Zn)含量分析(六)多型GWAS(M),使用35 K单核苷酸多态性(SNP)基因分型测定和性状数据(包括谷物蛋白含量(GPC),谷物淀粉糖含量(GAC),谷物总糖(TSS),六个多型GWAS(M)含量GWAS(M),这揭示了与晶粒质量参数相关的67个稳定的定量性状核苷酸(QTN),解释了在热应激条件下的3%至44.5%的表型变化。通过考虑至少三个GWAS模型和三个位置的共识结果,最终的QTN被降低至16个,其中12个是新的发现。值得注意的是,分别通过高素质等位基因聚合酶链反应(KASP)方法验证了两个分别与晶粒Fe和Zn相关的新标记,即AX-94461119(AX-94461119(染色体2A)和AX-95220192(染色体7D)。候选基因,包括含P环的核苷三磷酸水解酶(NTPases),Bowman-Birk型蛋白酶抑制剂(BBI)和NPSN13蛋白。这些基因可以作为增强质量特征和未来小麦改善计划中耐热性的潜在目标。
