摘要 :天然彩色棉 (NCC) 是一种环保的纺织纤维。将白色棉纤维加工成纺织品需要大量的能源、水和化学品,而 NCC 的加工省去了污染最严重的工序,即洗涤-漂白和染色;因此,NCC 提供了一种减少纺织品生产有害影响的途径。NCC 品种适合有机农业,因为它们天然抗虫、抗病、耐盐、耐旱。栽培的 NCC (Gossypium hirsutum L.) 品种的纤维颜色多种多样,从浅绿色到棕褐色和棕色。决定棕色棉纤维颜色的色素是原花青素或其通过类黄酮途径合成的衍生物。由于色素的存在,NCC 具有出色的紫外线防护性能。一些棕色棉品种表现出优异的纤维耐热性,可用于制造具有增强阻燃性的织物。本文回顾了棕色棉花色素产生的分子机制,以及培育具有多种颜色但纤维质量不会受到影响的 NCC 品种所面临的挑战。此外,我们还讨论了具有阻燃特性的 NCC 在纺织品应用中的机会。
CD24(分化24的簇),也称为雄性蛋白,是由糖基磷脂酰辛糖醇(GPI)锚定的糖蛋白。尽管成熟的CD24的蛋白质核心仅包含31至34个氨基酸,但它具有广泛的N连接和O连接的糖基化结构[1]。在1978年,人CD24的同源物小鼠热稳定抗原(HSA)以其耐热性[2]发现并命名。随着时间的流逝,CD24显然有助于多种炎症,免疫和神经系统疾病。最近,一项研究[3]将CD24定位为一种抗吞噬细胞表面蛋白,该蛋白充当“不要吃我”信号。因此,表现出CD24表达表达的癌细胞能够逃避免疫细胞监测并通过该机制限制免疫反应。CD24已被确定为癌症免疫疗法的有前途的靶标,并且使用抗体药物靶向可以提供有效的治疗选择。本综述基于对CD24的现有研究,探索其在癌症中的结构和作用,重点是针对蛋白质和潜在治疗的抗体药物的当前研究。发现将来可以为癌症治疗的创新方法铺平道路。
太空可能是最后的边疆,但在地球上,美国人每天都在享受太空探索的益处。自 1958 年成立以来,美国国家航空航天局 (NASA) 不仅致力于太空探索,还致力于将为太空计划开发的新技术应用到地球上。其成果是巨大的。他们开发出了更坚固、更轻便的材料。特殊涂层增加了建筑材料的耐腐蚀性、耐热性和强度。为宇航服开发的阻燃织物有多种用途。NASA 对太空独特的微重力条件下的人体进行了研究,从而带来了拯救生命的医疗技术。红外成像系统已经得到开发,可以更好地探测火灾、火山活动和环境条件,以及进行安全监视。美国宇航局的工程师和研究人员已将技术授权给私营企业,以改善医疗保健、公共安全、环境、计算机技术、交通、工业和制造技术,甚至改善家居和消费产品。本卷包含 67 个条目,这些条目涉及因与太空相关的研究和技术开发而开发或改进的产品和技术。它们代表了从太空计划中衍生的广泛产品——从现在常见的物品,如烟雾探测器和阻燃垫
基于 Al O -SiO -YO 体系的玻璃成分选自 Al O -SiO -YO 相图(图 1)的玻璃形成区,其标准是 YO 负载量最大以及玻璃具有良好的耐热性和耐化学性。采用高纯度初始化学成分(Al O(纯度 99.9%,New Met)、SiO(纯度 99.5%,Leico)和 YO(纯度 99.9%,Otto Kemi))制备优化成分 40Y O -20Al O -40SiO(wt.%)的玻璃。对每种氧化物的称量精度为 ±0.002 克。在制备过程中采取措施避免任何交叉污染。使用标准熔融淬火技术制备玻璃。将所有成分混合并彻底研磨,并在 110°C 下放置一夜,以去除混合和研磨过程中吸收的任何水分。将配料放入 Pt-Rh 坩埚中,在电加热升降 (RL) 熔炉中以 1650°C 加热。搅拌熔体并在熔化温度下保持足够的时间,以均匀混合并去除所有气泡以获得透明熔体。之后,将熔体从炉中取出,并用最佳温度淬火
执行摘要大约有30 000种可食用植物中有6000个已积极培养用于人类食用。,少于30种,其中只有少数是主食,占主导地位。全世界挑战在升级气候不确定性的情况下可持续地养活人口增长的挑战,促进被忽视和未充分利用的物种(NUS)的作用,这是一个至关重要的机会,是将转型加速到更可持续的农业发展系统的关键机会。这些物种通常适应各种生态壁ches,通常在苛刻和边缘环境中,为它们提供生理机制,使其在不利条件下以最少的投入而蓬勃发展。特征,例如干旱和耐盐性,耐热性,害虫和抗病性,以及与有益土壤传播生物的生态相互作用,以及独特的营养含量,使无味的遗传资源可用于气候耐气候作物。通过利用NUS的适应性潜力并将其整合到农业生物系统中,农民,价值连锁行为者和国家可以增强其应对气候变化的能力,并确保目前和后代的粮食安全和营养。
这项研究研究了EU-27中工业过程热量直接三化的潜力,并考虑了当今可用的技术,或者预计将于2035年最晚在2035年提供,包括电动锅炉,热泵,阻力加热,耐热性加热,降低等离子体,加热,Elec Tric Arc炉,电击炉,波浪供热和热储存技术。对七个工业领域的单独计算电势,并通过对14个单个应用的特定过程热量要求的分析来证实,假设将采取更多的努力来开发电动加热技术和Corre Sponding过程。 这种方法考虑了各种工业生产过程中的流程加热类型的相当多样性。 通过将这些要求与功能匹配对七个工业领域的单独计算电势,并通过对14个单个应用的特定过程热量要求的分析来证实,假设将采取更多的努力来开发电动加热技术和Corre Sponding过程。这种方法考虑了各种工业生产过程中的流程加热类型的相当多样性。通过将这些要求与功能匹配
本书在设计,制造,材料,机械和工艺工程以及质量保证之间的界面上及时提供了创新研究和发展的快照。它涵盖了各种制造工艺,例如磨,转弯,钻孔,铣削,开采和齿轮加工,包括增材制造,加强,机械加工,真空技术和变形释放。它专注于计算机和数值模拟,数学和可靠性建模以及制造系统和流程的机器学习模型。它描述了创新的切割和磨料过程以及联合技术。它还研究了各种涂层和材料的电阻,自我分离效果,增强,热处理,表面剥离和耐热性。收集在2024年9月10日至13日在乌克兰Odesa举行的第六次Grabchenko国际高级制造过程国际会议(Interpartner-2024)上发表的最佳论文,该书提供了对设计,制造,机械,机械,工程和流程工程以及高质量的Assolance Assolance Assolance and Sections and Inlogies and Sechologies and Insologe and Sections and Insologe andsoolants and Seconsoologe and Sections和Insologance and Seconsies和Technoloties and Seconsies and Sections和技术的全面检查。然而,它还旨在促进国际和跨学科的交流和合作,并在学术和工业部门之间提供桥梁。
摘要 由于其更好的强度重量比、可模塑性、抗断裂性以及能够使用当地材料,钢丝网水泥正成为一种越来越受欢迎的建筑材料。土聚物技术提供了一种环保的替代品,该技术使用碱性溶液来激活富含二氧化硅和氧化铝的材料。本研究重点研究土聚物基钢丝网水泥板,探索其弯曲性能并用土聚物砂浆替代水泥以提高性能。本研究调查了不同百分比的粉煤灰(范围从 0% 到 20%)、GGBS(范围从 80% 到 100%)和 2% 的纳米二氧化硅对钢丝网水泥土聚物混凝土性能的影响。使用碳纤维增强聚合物 (CFRP) 缠绕金属丝网测试弯曲行为。粉煤灰是煤电厂的副产品,与 GGBS 结合以提高强度和凝固性。采用 1:2 砂浆比,包含硅酸钠、氢氧化钠、GGBS 和粉煤灰。添加 80% GGBS 可获得最佳效果,尽管粉煤灰中 100% GGBS 的强度更高。纳米二氧化硅进一步提高了性能,1.5% 纳米二氧化硅和 80% GGBS 的强度显著提高 240%。研究最后确定了适合实际应用的优越组合,考虑到样品的渗透性、耐酸性和耐热性。
皮革制造过程涉及大量废物处理,会污染环境,有些过程是不可避免的。在目前的研究中,3D 打印技术被用于减少浪费并覆盖皮革中的缺陷区域。本研究重点是使用乳液聚合技术合成丙烯酸粘合剂。分析这些粘合剂的固体含量,以更好地优化用于整理操作的粘合剂量。实验粘合剂的固体含量为 26%。进行了粒度和热重分析,以了解颗粒的大小和形状及其耐热性。这些粘合剂用于皮革整理,并研究了皮革的性能。使用扫描电子显微镜 (SEM) 研究了皮革的表面形态变化。研究了干湿摩擦牢度、涂膜附着力、耐光性和感官性能,发现与对照皮革相比更胜一筹。采用具有轻微缺陷的丙烯酸整理皮革进行 3D 打印,并使用热塑性聚氨酯 (TPU) 作为长丝进行设计。丙烯酸涂层皮革对 TPU 具有良好的附着力,可在短时间内产生大量设计。使用 3D 打印技术将新添加剂添加到皮革中,以产生量身定制的有价值的设计,而不会产生任何浪费
高温对水稻 (Oryza sativa) 的雄性育性有有害影响,但水稻雄配子体免受高温胁迫的机制尚不清楚。在这里,我们分离并鉴定了一种热敏感的雄性不育水稻突变体——热休克蛋白 60-3b (oshsp60-3b),它在最适温度下表现出正常的育性,但随着温度升高育性降低。高温会干扰 oshsp60-3b 花药中花粉淀粉颗粒的形成和活性氧 (ROS) 清除,导致细胞死亡和花粉败育。与突变体表型一致,OsHSP60-3B 在热休克反应中迅速上调,其蛋白质产物定位于质体。至关重要的是,OsHSP60-3B 的过表达增强了转基因植物花粉的耐热性。我们证实 OsHSP60-3B 与质体中的粉质胚乳 6 (FLO6) 相互作用,FLO6 是水稻花粉中淀粉颗粒形成的关键成分。Western blot 结果表明,高温下 oshsp60-3b 花药中的 FLO6 水平显著降低,表明当温度超过最佳条件时,OsHSP60-3B 是稳定 FLO6 所必需的。我们认为,在高温下,OsHSP60-3B 与 FLO6 相互作用,调节水稻花粉中的淀粉颗粒生物合成,并降低花药中的 ROS 水平,以确保水稻雄配子体正常发育。
