免责声明 本信息是根据美国政府机构赞助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
除非出现特殊情况,本文件将自发布之日起 25 年内在互联网上或其未来的后续版本上保留。访问该文件意味着允许任何人阅读、下载、打印单份副本供个人使用,以及以不加改变的方式将其用于非商业研究和教学。稍后转让版权不能撤销此许可。该文件的任何其他使用均须获得作者的许可。为了保证真实性、安全性和可用性,我们采取了技术和管理解决方案。作者的道德权利包括在以上述方式使用文献时在良好实践所要求的范围内署名作者的权利,以及防止文献被更改或以冒犯作者文学或艺术声誉或个性的形式或内容呈现的权利。有关林雪平大学电子出版社的更多信息,请访问该出版商的网站 http://www.ep.liu.se/。
超导低温电路是一种新兴的节能技术,可以替代或补充现有的 CMOS VLSI 系统。最先进的超导电路利用十多个铌层作为逻辑电路和互连。这些系统中存在多个电感耦合噪声源。本文评估了这些电感噪声源,并讨论了耦合噪声的影响。特别是,本文描述并讨论了无源传输线中耦合噪声的影响,其中数据信号的幅度异常小。本文还描述了偏置电流耦合到逻辑门内电感的影响,因为逻辑门需要精确的偏置条件。本文提供了管理耦合噪声有害影响的指南。
表面等离子体共振(SPR)是开发传感器平台 - 用于临床诊断,药物发现,食物质量和环境监测应用的关键技术。虽然Prism耦合(Kretschmann)SPR仍然是实验室工作流动的“金色标准”,这是由于更轻松的制造,处理和通过PUT高较高,但其他配置的spr,例如光栅耦合SPR(GC-SPR)和Wave-Guide Mode等SPR尚未实现其技术潜力。这项工作评估了影响GC-SPR性能的技术方面,并回顾了此类平台制造的最新进展。原则上,GC-SPR涉及带有定期光栅的等离子金属纤维的照明,以通过基于差异的相位匹配来激发表面等离子体(SP)。然而,GC-SPR的实际性能受到通过自上而下的光刻技术产生的光栅结构的地形的影响。本综述讨论了在大规模上实现具有均匀特征和周期性的一致的等离子光栅的最新方法,并探讨了等离子体激活和底物材料的选择,以增强性能。该评论还提供了有关不同的GC-SPR测量结果的见解,并强调了机会,其潜在应用是具有转化能力的生物传感器。
ins6tut laue-langevin Ph.d奖学金“磁成功耦合3”是FEPS 3中的Phonon耦合。该项目结合了先进的冷凝物质计算和最先进的中子散射实验,以研究分层的范德华化合物中磁性和晶体晶格振动之间的相互作用。联系人:合作。托马斯·奥尔森(Thomas Olsen)教授,dtu tolsen@fysik.dtu.dk,Andrew Wildes博士,伊利诺斯(Wildes@ill.fr)博士学位,博士提供了一个独特的机会,可以使用两种第一原理理论方法和中子散射技术在两维材料中对磁性进行尖端研究。该职位将为您提供学术界职业的理想起点,您将获得计算固态物理和最新中子散射方法的高级技能。您正式隶属于这两个机构,但将在ILL雇用并在DTU招募。该项目的主题是分层的van der waals化合物FEPS 3中的磁子和声子之间的复杂相互作用。目前,这些类型的化合物对它们可能被分层为一个原子层,类似于石墨烯。feps 3特别有趣,因为它具有本质上的磁性,可深入了解低维度中的基本磁性,并具有在基于石墨烯的技术中应用的潜力。该化合物也具有高度的磁性性,在磁性和晶体结构之间具有强耦合。该项目结合了两个主要机构的资源。理解化合物特性的关键在于晶格晶格振动(称为声子),被称为磁子(称为镁元),尤其是它们之间的相互作用。目前,这种相互作用在凝聚的物理学中对此尚不清楚。在FEPS 3中研究它们将导致对其物理特性的理解,并将作为更好地理解磁晶格耦合的基础。您将通过以第一原理计算建模为指导的非弹性中子散射实验来研究FEPS 3中的镁 - 光子相互作用。在法国短暂的整合期之后,将在项目开始(六个月)的某个时间上花费在DTU上,专注于学习和应用密度功能理论以分析磁通光谱。剩余时间(2。5年)将用于不良表现和分析中子散射实验,这将不受第一原理模拟的持续支持。因此,在整个项目期间,实验与理论之间将存在很强的相互作用。dtu是全球领先的技术大学,以其研究,教育,创新和科学建议的卓越表现。ILL是中子科学技术领先地位的国际研究中心,经营具有异常高的中子通量和约40个尖端仪器的中子来源。您将成为来自欧洲各地的充满活力和凝聚力的学生的一部分,这些学生有定期的社会和发展活动,并在法国阿尔卑斯山脚下的一个国际化城市体验生活。该项目将使您能够建立研究方向并在欧洲建立联系和合作者网络,并且是磁性和中子散射或以后的职业生涯的绝佳跳板。有关更多信息,请联系:协会。托马斯·奥尔森教授(tolsen@fysik.dtu.dk)
金属中的声子散射是材料科学中最基本的过程之一。但是,了解此类过程仍然具有挑战性,需要有关声子与电子之间相互作用的详细信息。我们使用超快速电子弥漫性散射技术来解决时间和动量中的飞秒激光器激发剂的钨中的非平衡声子动力学。我们确定声子模式的瞬态群体,这些群体表现出通过电子 - 音波耦合引发的强动量依赖性。对于布里远区域边界附近的声子,我们在大约1皮秒上观察到其人口的短暂上升,这是由强烈的电子 - 音波耦合驱动的,然后在大约8个picsecond的时间表上缓慢衰减,由弱声子 - 音音子释放过程控制。我们发现,隔离这两个过程需要钨的特殊谐波,从而导致纯金中的长期非平衡声子。我们发现电子散射可能是金属声子热传输的决定因素。
我们计划研究此类结构并实现一种高效自旋光子界面装置。这个具有挑战性的项目结合了先进的外延生长、纳米制造和量子光学实验。分子将嵌入二极管结构中,以允许在点之间施加电场,从而使两个点的能级产生共振,从而产生跨两个点的非局域化新电子态。自旋态将通过磁场下的光脉冲进行寻址和控制。然后可以设置原始实验,例如将一系列射频磁场脉冲调整到单重态-三重态自旋共振,从而驱动光学初始化的量子比特。
记录版本:该预印本的一个版本于 2020 年 11 月 25 日在《自然通讯》上发表。已发布的版本请参阅 https://doi.org/10.1038/s41467-020-19759-w 。
Hong-Ou-Mandel (HOM) 效应是一种令人着迷的量子现象,无法用经典解释。传统上,远程非线性源已用于在 HOM 分束器上实现光子的重合。在这里,我们建议可以使用位于分束器间隙上的超辐射近场耦合发射器在本地创建 HOM 干涉所需的重合发射源。我们表明,使用 HOM 光子检测可以大大增强对分束器间隙介电常数变化的灵敏度和相应的 Fisher 信息。随后,我们概述了将超辐射发射器与实际传感器系统集成的几种策略。总之,这些发现应该为广泛的近场 HOM 量子传感器和新型量子设备铺平道路。