共轭聚合物的融化具有溶液加工的一种环保替代方案的潜力,但是分子属性和潜在控制策略的具体作用仍然在很大程度上没有探索。在这里,两个系列的剖面聚(3-己基噻吩)(p3HT)表明,链长的效果在很大程度上取决于链缺损的量(RegieRotality)。超出链折叠过渡,增加分子量M W对于90%的防治性P3HT,导致结晶动力学和降低的热稳定性的结晶质量较慢,而95%的RendOreTorgularity使结晶几乎对链长不敏感。融化的自种可用于操纵P3HT的结晶温度,但是当结晶被阻碍最大时,最有效。更长,更有缺陷的链。p3HT自种由最初存在的微晶的热稳定性主导,而不是仅取决于m w的扩散效应。总体而言,结果强调了控制和报告剖面和分子量的关键需求。
大规模的数据源,遥感技术和出色的计算能力已极大地受益于环境健康研究。最近,引入了各种机器学习算法,以提供有关与每个哮喘患者症状和潜在环境风险因素有关的聚类数据异质性的机械见解。但是,关于这些机器学习工具的性能的信息有限。在这项研究中,我们比较了十种机器学习技术的性能。使用不平衡采样的高级方法(IS),我们改善了9种常规机器学习技术的表现,可预测暴露水平与室内空气质量的相关性与患者峰值呼气流量(PEFR)的变化之间的变化。然后,我们提出了一种深度学习的转移学习方法(TL),以进一步提高预测准确性。我们选择的最终预测技术(TL1_IS或TL2-IS)的TL1_IS的平衡精度中值(56〜76)%为66(56〜76)%,TL2_IS的68(63〜78)%。TL1_IS和TL2_IS的精确水平为68(62〜72)%和66%(62〜69)%,而敏感性水平为58(50〜67)%和59%(51〜80),来自25名患者的敏感性为1.08(精度,精度,精度),至1.28(敏感性),相比之下。我们的结果表明,使用不平衡采样的转移机学习技术是预测PEFR变化的强大工具,这是由于暴露于室内空气而变化的,包括2.5μm和二氧化碳的物质浓度。此建模技术甚至适用于小型或不平衡的数据集,该数据集代表一个个性化的现实世界设置。
一系列卡宾-金-乙炔配合物 [(BiCAAC)AuCC] n C 6 H 5 − n ( n = 1,Au1;n = 2,Au2;n = 3,Au3;BiCAAC = 双环(烷基)(氨基)卡宾) 已被高产率合成。化合物 Au1–Au3 呈现深蓝色至蓝绿色磷光,在所有介质中量子产率高达 43%。金配合物 Au1–Au3 中 (BiCAAC)Au 部分的增加会增加紫外可见光谱中的消光系数和更强的振子强度系数,理论计算支持这一点。发光辐射速率随着 (BiCAAC)Au 部分的增加而降低。时间相关密度泛函理论研究支持磷光的电荷转移性质,这是因为单重态(S 1 )和三重态(T 1 )之间的能隙很大(0.5–0.6 eV)。瞬态发光研究揭示了非结构化紫外瞬时荧光和 428 nm 振动分辨长寿命磷光的存在。有机发光二极管 (OLED) 采用物理气相沉积法制成,以 2,8-双(二苯基磷酰基)二苯并[b,d]呋喃 (PPF) 作为主体材料,与复合物 Au1 反应。在 405 nm 处观察到近紫外电致发光,器件效率为 1%,同时在 10 尼特的实际亮度下 OLED 器件寿命 LT 50 长达 20 分钟,表明一类非常有前景的材料可用于开发稳定的紫外 OLED。
上下文。大多数观察到的系外行星的平衡温度高(T EQ> 500 K)。了解其大气的化学和解释其观察结果需要使用包括光化学在内的化学动力学模型。这些模型中使用的真空紫外线(VUV)吸收横截面的热依赖性在高温下是鲜为人知的,从而导致不确定性在产生的丰度谱。目标。我们工作的目的是通过实验研究外部大气的VUV吸收横截面的热依赖性,并提供准确的数据以在大气模型中使用。这项研究的重点是乙炔(C 2 H 2)。方法。我们使用VUV光谱和同步辐射测量了七个温度下的C 2 H 2的吸收横截面,在115-230 nm光谱结构域中记录的296至773 K。这些数据在我们的一维热化学模型中使用,以评估它们对通用热木星样系外行星气氛的预测组成的影响。结果。C 2 H 2的绝对吸收横截面随温度而增加。这种增长从115 nm相对恒定,并从185 nm急剧上升到230 nm。这种变化还影响了其他副产品(例如甲烷(CH 4)和乙烯(C 2 H 4)的丰富曲线。结论。我们介绍了在高温下C 2 H 2的VUV吸收横截面的第一个实验测量。使用该模型计算的C 2 H 2的丰度曲线显示出略有变化,当使用C 2 H 2吸收横截面与296 K相比,在773 K时测量的5×10-5 bar接近40%,与296 K相比。这是由1530 nM的吸收率较高的230 nM,该吸收率在296 K中。光谱范围。需要对其他主要物种进行类似的研究,以提高我们对系外行星气氛的理解。
在本文中,我们介绍了一种新颖的多尺度和自动调整的半监督深度子空间聚类(MAS-DSC)算法,旨在解决高维现实世界数据(特别是在医学成像领域)中深度子空间聚类的挑战。传统的深度子空间聚类算法大多是无监督的,其有效利用医学图像中固有的先验知识的能力有限。我们的 MAS-DSC 算法结合了半监督学习框架,使用少量标记数据来指导聚类过程,从而增强了特征表示的判别能力。此外,多尺度特征提取机制旨在适应医学成像数据的复杂性,从而实现更准确的聚类性能。为了解决深度子空间聚类中超参数选择的困难,本文采用贝叶斯优化算法来自适应调整与子空间聚类、先验知识约束和模型损失权重相关的超参数。在ORL、Coil20、Coil100等标准聚类数据集上进行的大量实验验证了MAS-DSC算法的有效性。结果表明,通过多尺度网络结构和贝叶斯超参数优化,MAS-DSC在这些数据集上取得了优异的聚类结果。此外,在脑肿瘤数据集上的测试证明了该算法的鲁棒性,以及其在半监督学习框架下利用先验知识进行高效特征提取和增强聚类性能的能力。
有效的基因疗法依赖于有效的基因递送系统。病毒基因递送在转移和表达外部基因方面表现出色。但是,它们的免疫力和大规模生产的困难限制了其临床应用。相比之下,由于免疫原性较小,对大规模生产的便利性,基于纳米颗粒的基因递送系统的注意力越来越多。然而,与病毒系统相比,它们的转染效率差仍然是一个重要的障碍。在主题研究中,我们研究了在HEK293T,CALU-3,CALU-6细胞系和原代人骨髓间充质干细胞(MSC)中,我们调查了PEI涂层石墨烯氧化物的转染效率。氧化石墨烯的高表面比和良好的生物相容性使其成为基因递送系统的吸引力。但是,在水性环境中氧化石墨烯的低分散性是需要征服的第一个障碍。为此,我们通过在pH值为7的pH值中超声超声来增强水中氧化石墨烯在水中的分散性和稳定性。然后,将氧化石墨烯与分支PEI(25 kDa)偶联以具有局部电荷,从而使其能够将其凝结为具有天然负潜能的核酸。我们合成的纳米载体(GO-PEI)的生理化学特性由DLS,FT-IR和AFM确定。多聚体中使用的质粒包含GFP基因,从而使我们能够通过荧光显微镜和流式细胞体 - 尝试验证转染效率。虽然GO-PEI载体在转染HEK293T细胞方面高效,但MSC和Calu-3细胞的转移效率明显低。我们假设这些细胞中GO-PEI转染效率较低的主要原因是由于其较高的毒性。尽管如此,考虑到氧化石墨烯在药物输送中的各种优势以及其在生物医学中的光学和电气应用,我们建议用更具生物相容性材料功能化氧化氧化烯,以增强其作为这些细胞类型中基因载体的潜力。
神经形态架构的底部两层经过设计,并被证明能够进行在线聚类和监督分类。使用主动脉冲树突模型,单个树突段执行的功能与经典的积分和激发点神经元基本相同。然后,单个树突由多个段组成,并能够进行在线聚类。虽然这项工作主要侧重于树突功能,但可以通过组合多个树突来形成多点神经元。为了展示其聚类能力,树突被应用于脉冲分类——脑机接口应用的重要组成部分。监督在线分类被实现为由多个树突和简单投票机制组成的网络。树突独立且并行地运行。网络以在线方式学习,并能适应输入流中的宏观变化。
ETS 转录因子是一个蛋白质家族,由一组在从后生动物到人类的进化过程中保守的基因编码 [1,2]。迄今为止,已在脊椎动物中描述了该家族的 28 个成员,分为 12 组 [3]。这些转录因子的特点是具有一个高度保守的有翼螺旋-转角-螺旋 DNA 结合域 (DBD),该域可识别位于靶基因启动子中的具有中央 5′-GGA(A/T)-3′ 核心的特定 DNA 元素,称为 ETS 结合位点 (EBS)。尽管所有 ETS 家族成员都共享相同的 DBD,但每个 ETS 转录因子都有自己的 DNA 结合特性,这些特性受到严格控制以确保特定的生物学作用。具体而言,ETS 转录因子的 DNA 结合特性可通过以下方式彼此区分:(i) EBS 序列识别的细微差异 [4]、(ii) 与不同结合伙伴的特异性相互作用,或 (iii) 调节其对 DNA 亲和力的差异性翻译后修饰 [3]。尽管如此,ETS 转录因子在许多细胞类型(例如造血细胞、乳腺和前列腺组织)中广泛共表达,并且这些细胞中每种因子的生物学特异性仍不清楚 [3]。
