当今世界对清洁能源的需求超过了供应。这使得清洁能源(如聚变)越来越受到决策者、投资者和广大公众的关注。原则上,聚变每千克燃料产生的能量是裂变的四倍,是燃烧石油和煤炭的近四百万倍。目前国际社会对这种清洁能源的承诺水平使我们更接近聚变能源。一个典型的例子是 ITER,它是世界上最大的聚变实验,它联合了来自 35 个国家的科学家,旨在实现自持聚变反应并展示可观的能量增益。建设正在进行中,一旦完成,ITER 有望开启聚变能源发展的下一阶段,示范聚变发电厂(称为 DEMO)旨在首次从聚变中发电。国际原子能机构处于 DEMO 开发的前沿,促进国际协调并分享世界各地项目的最佳实践。国际原子能机构鼓励对 DEMO 的讨论,并推动广泛的国际对话,以克服高度技术挑战并使聚变能成为现实。国际原子能机构出版的科学期刊《核聚变》见证了该组织对聚变研究的承诺。它是世界上历史最悠久、最权威的聚变期刊。该出版物是对之前发行的《聚变物理学》的补充,描述了磁聚变技术的广泛领域,从等离子体加热和电流驱动到聚变中子学和材料和组件,再到真空泵送和燃料,再到氚处理和氚工厂。
日本将核聚变能视为新兴产业,不会错过参与全球核聚变供应链竞争的机会。 除了后续的ITER项目/BA活动、DEMO开发外,日本还将通过商业化等多方面加速核聚变能的实现。 日本将成立核聚变产业委员会,支持初创企业等的研发,就安全法规进行讨论,加强对新兴技术的支持,开展教育项目等。
背景:2019 年,国会通过《核能创新与现代化法案》(NEIMA;公法 115-439),指示 NRC 开发监管基础设施,以支持先进核反应堆(包括核裂变反应堆和聚变反应堆)的开发和商业化。NEIMA 要求 NRC 在 2027 年 12 月 31 日之前“完成一项规则制定,以建立一个技术包容的监管框架,供商业先进核反应堆申请人选择使用”。监管框架的制定旨在为聚变技术开发商提供清晰度和可预测性。为了响应 NEIMA 和聚变技术的持续发展,委员会在 2020 年指示 NRC 工作人员“通过制定供委员会考虑许可和监管聚变能系统的方案,考虑在我们的监管结构中适当处理聚变反应堆设计。”作为回应(ML20288A251;2020 年 11 月 2 日),NRC 工作人员表示,它将评估聚变技术带来的潜在风险和可能的监管方法,这些方法与正在进行的先进核裂变反应堆规则制定无关,将创建 10 CFR 第 53 部分“面向商业核电站的风险知情、技术包容性监管框架”。
引领实用聚变能源之路 自原子时代来临以来,通用原子公司一直站在聚变科学和技术创新的前沿。通过与政府和工业界的长期合作,通用原子公司为全球的研究项目提供服务和专有聚变技术 - 从集成等离子体控制系统到独一无二的诊断仪器。如今,通用原子公司正在运用其在运营、研究和开发方面数十年的专业知识,在 2030 年代打造一个可靠且具有成本竞争力的聚变试验工厂。
在磁约束聚变 (MCF) 领域,氚燃料循环已得到详尽研究。[1,2,3] 已经开发出处理、监测、从化学结合物种中回收、浓缩和储存氚的技术,其产量接近反应堆相关产量。[4] 关键组件已在大型托卡马克或氚处理设施中进行了测试。[5] 该技术的很大一部分可转移到适用于惯性聚变能 (IFE) 的系统。然而,操作条件与磁性情况有很大不同,因此对 IFE 燃料循环组件施加了 MCF 情况下没有的条件,因此需要针对 IFE 特定主题进行研究。燃料回路由喷射器系统和用于回收反应堆流出物的基础设施组成。MCF 中的颗粒注入是一种将 DT 冰输送到托卡马克等离子体深处的有吸引力的方法。部署在 IFE 反应堆中的目标需要特定的设计来优化燃烧分数,该分数可能高达 1/3。这可能需要不同元素的复合层。湿泡沫等靶概念将由嵌入低密度 CH 泡沫中的液态 DT 组成,也很有前景。MCF 反应堆将在真空中运行,主要成分是氢同位素。一些 IFE 反应堆设计将在中等真空(几托)下运行,主要成分是氖或氙,以帮助缓和冲击波和对第一壁的粒子冲击。MCF 反应堆必须应对等离子体与偏滤器相互作用时产生的灰尘。IFE 反应堆需要将残留的靶碎片与流出物中的挥发性氢物种分离并去除。图 1 提供了 IFE 反应堆的通用燃料循环。作为代表性示例,该设计隐含了在薄壁塑料外壳内分层使用 DT 冰。泡沫填充的液态 DT 靶和更复杂的靶设计(例如采用空腔的靶设计)将需要更广泛的碎片收集和处理子系统(具体取决于细节)。燃料循环包括两个独立的回路:一个回路为反应堆提供燃料,另一个回路用于增殖氚。反应堆流出物被分离成两股:挥发性成分在气体离开反应堆时被低温抽吸,而颗粒碎片则通过重力送入收集器并氧化以将吸收的氢与碳物质分离。低温分离器将氦灰排放到环境中,将氖/氙转移以供再利用,并通过渗透器将氢同位素排放到同位素分离器。同位素分离器将氢排放到环境中,并将氘和氚引导到胶囊工厂和靶填充系统。增殖毯回路有两个主要功能:从反应堆中提取热量和增殖氚。反应堆周围是熔盐池,用于捕获和缓和聚变中子,作为氚增殖的前体。熔盐从反应堆泵出,通过热交换器、杂质去除子系统(用于净化熔盐)、氚提取模块,然后返回到反应堆周围的安全壳中。在 380 MWe IFE 反应堆中,主要物质的摩尔流速为:H、D、T、C、O、He 和 Xe,该反应堆使用封装在薄塑料壳中的 DT 冰靶。20 毫克氚靶以 0.5 Hz 的频率注入。燃烧分数假设为 25%。聚变功率转换为电能的比率假设为 30%。假设工厂占空比为 90%。
摘要 我们分析并综合了许多相关的近期研究和报告,研究了核聚变能源的潜在早期市场及其预计的成本目标。为了向那些希望在 2040 年前实现商业部署的雄心勃勃的核聚变开发商提供指导,我们根据当今的市场价格研究了核聚变发电、工艺用热和制氢的成本要求,但根据 2035 年的可能情景做出了各种调整,例如“一切照旧”、可再生能源渗透率高以及碳定价高达 100 美元/吨二氧化碳。关键发现是,核聚变开发商应考虑最初关注高价的全球电力市场,并考虑根据技术经济因素包括综合热存储,以最大化收入并在可再生能源渗透率高的市场中竞争。工艺用热和制氢将是核聚变的早期艰难市场,但随着市场的发展以及核聚变的平准化电力成本降至 50 美元/兆瓦时以下,核聚变可能会打开大门。最后,我们讨论了核聚变工厂通过热电联产(例如海水淡化、直接空气捕获或区域供热)增加收入和降低资本成本(例如通过最大限度地减少建设时间和利息或改造燃煤电厂)的潜在方法。
本文件是作为美国政府资助工作的记录而编写的。尽管本文件被认为包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国的观点和意见。
我们已经建立了先进聚变中子源 (A-FNS) 的概念设计。为了获得聚变 DEMO DT 反应堆合格材料所需的辐照数据,我们新设计了九个测试模块 (TM) 以在 A-FNS 中实施。测试模块的设计基于一种新的独特维护方案:“与屏蔽塞集成的水平维护方法”。测试模块中 F82H 样品的目标 dpa 在运行可用率为 50% 的运行期间约为 10dpa/fpy。我们确定了测试单元中 TM 的配置,以实现每个测试模块所需的辐照数据。我们对锂靶系统的氚迁移进行了初步估计。发现需要 10 5 m 3 /h 的连续通风和几个容积为 30 m 3 的排水箱来排放每周的废水。 A-FNS 的设计目的是使产生的大量中子不仅可用于聚变材料辐照,还可用于各种非聚变用途。我们新设计了一个模块,用于生产大量用于医疗用途的 99 Mo。这种非聚变用途的模块可以安装在测试单元中,并兼容聚变材料辐照测试。