NNSA 的 ICF 计划拥有三座独一无二的世界领先科学设施,即劳伦斯利弗莫尔国家实验室 (LLNL) 的国家点火装置 (NIF)、桑迪亚国家实验室的 Z 脉冲功率装置 (Z) 和罗彻斯特大学激光能量学实验室 (LLE) 的欧米茄激光装置 (OMEGA)。这三座互补的设施是美国唯一能够研究宏观高能密度 (HED) 科学的设施。此外,洛斯阿拉莫斯国家实验室为聚变点火贡献了新方法,而每个实验所需的复杂靶材均由通用原子公司开发和制造。靶材质量和创新继续成为三座主要 ICF 设施性能提升的重要推动力。
摘要 和平建设曾经为人类寻求核聚变提供动力;现在它仍然可以。本文通过应用非杀伤性全球政治科学和平建设框架、五螺旋技术创新生态系统模型和最近的路径依赖理论,分析了燃烧等离子体聚变突破对加剧冲突和建设和平的巨大影响。第一次燃烧等离子体将是一个前所未有的历史事件,最接近的类似事件是三位一体测试;我们从路径依赖的角度分析测试,将其与核聚变进行比较。与核裂变一样,核聚变将因其内在优势而被武器化。然而,导致核聚变的创新并非无人注意。与在战时秘密进行的三位一体不同,核聚变是在和平时期开发的,以协助低碳转型。在核裂变方面,尽管最初取得了进展,但苏联在二战后立即拒绝了美国的巴鲁克计划,该计划将原子能和武器置于联合国之下,以遏制核军备竞赛。结果就是冷战。同样,我们预测全球将迎来一个关键时刻,通过新的巴鲁克计划可以建立起新的规范核秩序,从而达成一项全球和平条约,人类也将重新确定本世纪的目标。
因此,FEC 2023 的范围旨在反映新时代在聚变能源研究、技术开发和工业部署准备方面的优先事项。会议旨在作为一个平台,分享受这些新优先事项影响的国家和国际聚变计划的研究和开发成果,从而帮助确定全球在聚变理论、实验、技术、工程、材料、先进概念、安全、社会经济和工业部署准备方面的进展。此外,会议还将根据净能量产生聚变装置和聚变发电厂的总体要求来设定这些结果,从而帮助确定前进的方向。
自 2014 年以来,先进能源转换 (AEC) 项目研究了在晶格中紧密吸收大量氘燃料的材料中的新型核反应。这些实验最终导致了轫致辐射活动,该活动反复在氘化金属中诱发核反应。根据项目期间开发的理论,金属晶格的负电子屏蔽带正电的氘核,以克服静电屏障,实现由光中子引发的核聚变。这一发现为科学界引发聚变反应开辟了一条新道路,并可能为 NASA 带来深空能源。著名期刊《物理评论 C》(PRC) 在其 2020 年 4 月刊上发表了实验观察结果和基础理论。后续虚拟研讨会于 2020 年 5 月 21 日举行,使用 Webex 平台展示期刊论文,并让 NASA 专家小组评估研究及其应用。
聚变能科学概述聚变能科学 (FES) 计划的使命是扩展对极高温度和密度物质的根本理解,并构建开发聚变能源所需的科学基础。此外,FES 的使命还包括推进所需的基础研究,以解决发展聚变能作为美国清洁能源所需的基础科学和技术差距。这一方法包括通过将研究平衡转向长期计划 (LRP) 聚变材料和技术 (FM&T) 差距来实现聚变能使命,这将三大科学驱动因素联系起来:维持燃烧等离子体、为极端条件设计和利用聚变能。SC 支持美国参与 ITER,以便美国科学家能够使用符合 LRP 目标的燃烧等离子体实验设施。 DIII-D 国家聚变设施和国家球形环实验升级 (NSTX-U) 设施是世界领先的科学办公室 (SC) 用户设施,用于实验研究,供国家实验室、大学和行业研究团体的科学家使用,以优化磁约束机制。惯性聚变能 (IFE) 合作中心为这项工作提供了补充,以支持惯性约束方法的战略发展。聚变创新研究引擎 (FIRE) 中心通过与多个公共和私人合作伙伴的小组研究合作,解决关键的科学和技术差距,并将发现科学、创新和转化研究结合在一起。与聚变私营部门的合作可以通过聚变能源创新网络 (INFUSE) 代金券计划和 FES 建立的聚变发展里程碑计划共同努力解决常见的科学和技术挑战,从而加速聚变能源的可行性,以支持政府的大胆十年愿景 (BDV),为商业化聚变能源奠定基础。 FES 支持聚变理论和模拟方面的重大努力,以预测和解释等离子体作为自组织系统的复杂行为,从而补充这些实验活动。FES 还与高级科学计算研究 (ASCR) 计划合作,支持通过高级计算进行科学发现 (SciDAC) 组合。美国科学家利用国际合作伙伴关系对具有独特能力的海外托卡马克和仿星器进行研究。开发能够承受巨大热量和中子暴露并培育使聚变成为自给自足能源的燃料的新型材料和技术对于聚变试验工厂 (FPP) 的设计基础非常重要。材料等离子体暴露实验 (MPEX) 设施将解决等离子体-材料相互作用方面的知识空白。
直接聚变驱动器 (DFD) 是一种核聚变发动机,可为任何航天器产生推力和电力。它是一种紧凑型发动机,基于 D-3He 无中子聚变反应,使用普林斯顿场反转配置进行等离子体约束,并使用奇偶校验旋转磁场作为加热方法实现聚变。推进剂是氘,它被聚变产物加热,然后膨胀到磁喷嘴中,产生排气速度和推力。根据任务要求,单个发动机的功率范围可以在 1 - 10 MW 之间,并且能够实现 4 N 至 55 N 的推力,具体取决于所选功率,比冲约为 10 4 s。在这项工作中,我们介绍了使用这种发动机到达和研究太阳系外边界的可能性。目标是在不到 10 年的时间内,携带至少 1000 公斤的有效载荷,前往柯伊伯带及更远的海王星外天体 (TNO),如矮行星鸟神星、阋神星和鸟神星,从而可以执行从科学观测到现场操作等各种任务。所选的每个任务剖面图都尽可能简单,即所谓的推力-滑行-推力剖面图,为此,每个任务分为 3 个阶段:i. 从低地球轨道逃离地球引力的螺旋轨迹;ii. 行星际旅行,从离开影响区到滑行阶段结束;iii. 机动与矮行星会合。图中给出了每次机动的推进剂质量消耗、初始和最终质量、速度和 ∆ V。轨迹分析针对两种情况进行:简化场景,其中 TNO 在黄道平面上没有倾斜,真实场景,其中考虑了真实的倾斜角。此后,研究了多种场景,以达到 125 AU,以便研究太阳磁层的外部边界。我们的计算表明,由 DFD 推进的航天器将在有限的时间内以非常高的有效载荷与推进剂质量比探索太阳系的外部边界,开辟前所未有的可能性。
首次实现了聚变“科学盈亏平衡”(即,目标增益 G 目标为 1,总聚变能量输出 > 激光能量输入)(此处,G 目标 ∼ 1.5)。本文报告了设计变更的物理原理,这些变更导致在国家点火装置上使用激光间接驱动进行首次受控聚变实验,以产生大于 1 的目标增益,并超过了之前根据劳森标准获得的点火所需的条件。成功的关键因素在于减少“滑行时间”(激光脉冲结束和内爆峰值压缩之间的持续时间)和最大化传递到“热点”(聚变燃料的产量产生部分)的内部能量。解释了滑行时间与动能向内能的最大效率转化之间的联系。不对称和流体动力学诱导混合的能量学后果是高产量大半径内爆设计实验和设计策略的一部分。本文展示了不对称和混合如何合并为一个关键关系。结果表明,混合会产生与内爆不对称影响类似的动能成本,从而将点火阈值转移到更高的内爆动能——这一因素通常不包含在广义劳森标准的大多数陈述中,但关键的必要修改显然已经显现出来。
这些力会产生极高的压力和温度。1 我们的太阳内部温度为 2700 万华氏度,核心压力约为地球大气压的 3400 亿倍。2,3 在这些极端条件下,太阳核心中的氢原子被压缩并最终融合在一起,这一过程会以伽马射线光子和中微子的形式释放出大量能量。4 这种聚变能传播到太阳表面,是太阳发光的来源。5 几十年来,科学家和工程师不断突破实验物理学的界限,复制这种反应并将其用作能源。聚变反应堆给社会带来的潜在利益难以估量;燃料丰富且可广泛获取,碳足迹可以忽略不计,其相关的核废料和防扩散问题也微乎其微。6,7 尽管有这些激励措施,尽管该领域最近取得了里程碑式的成就,但聚变能科学仍然是当今实验物理学中最具挑战性的领域之一。陆地反应堆实现核聚变的关键基准被称为“点火”。点火定义为核聚变反应产物足以在没有外部能量输入的情况下维持等离子体温度和反应本身的点。8 换句话说,当反应产生的能量大于其消耗的能量时,即达到点火。通常,维持该反应所需的条件描述为:温度 (T)、等离子体密度 (n) 和约束时间 (t)。在过去的 50 年里,(n) 和 (T) 已经得到了相当完善的定义。9 核聚变能科学中剩下的一个核心挑战是第三个量:(t)。10 这是指核聚变产物在反应离子等离子体内的停留时间。11 为了产生大量的能量,需要时间来让核聚变反应发生。12 在我们的太阳内部,引力约束足以满足这一要求。在地球上,需要其他约束机制。两种主流约束机制是惯性和磁约束。 13 惯性聚变应用
聚变能的商业化正在加速。迄今为止,该行业已吸引超过 60 亿美元的国际投资,这一数字比 2022 年增加了 14 亿美元 3 。世界各地的公共和私营部门聚变组织都在设计原型聚变发电厂,一些组织计划在本世纪末之前开始建设。如果英国要占领私营部门聚变市场的很大一部分,就需要明确规划流程和框架。不仅对于私营聚变公司,而且对于政府的原型聚变发电厂计划 STEP(用于能源生产的球形托卡马克)、投资者、当地社区和所有潜在开发商也是如此。为了提供清晰度并支持不断发展的聚变行业,政府正在发布其为聚变能指定新的国家政策声明 (NPS) 的提案。