洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
2.22. 阿尔万德 (伊朗原子能组织,伊朗伊斯兰共和国) ...................................................................................... 40 2.22.1. 简介 ...................................................................................................... 40 2.22.2. 目的 ...................................................................................................... 40 2.22.3. 主要特点 ............................................................................................. 40 2.23. 达马万德 (伊朗原子能组织,伊朗伊斯兰共和国) ............................................................................. 41 2.23.1. 简介 ...................................................................................................... 41 2.23.2. 目的 ...................................................................................................... 41 2.23.3. 主要特点 ............................................................................................. 41 2.24. IR-T1 (伊朗伊斯兰共和国伊斯兰阿扎德大学) ...................................................................................................... 42 2.24.1. 简介 ...................................................................................................... 42 2.24.2. 目的 ...................................................................................................... 42 2.24.3. 主要特点 ............................................................................................. 42 2.25. DTT (意大利 ENEA) ............................................................................................. 43 2.25.1. 简介 ...................................................................................................... 43 2.25.2. 目的 ...................................................................................................... 43 2.25.3. 主要特点 ............................................................................................. 43 2.26. FTU (意大利 ENEA) ............................................................................................. 44 2.26.1. 简介 ...................................................................................................... 44 2.26.2. 目的 ...................................................................................................... 44 2.26.3.主要特点 ................................................................................................ 44 2.27. LATE(日本京都大学) ...................................................................... 45 2.27.1. 简介 ................................................................................................ 45 2.27.2. 目的 ................................................................................................ 45 2.27.3. 主要特点 ............................................................................................. 45 2.28. PLATO(日本九州大学) ...................................................................... 46 2.28.1. 简介 ................................................................................................ 46 2.28.2. 目的 ............................................................................................................................. 46 2.28.3. 主要特点 .............................................................................. 46 2.29. QUEST(日本九州大学) .............................................................. 47 2.29.1. 简介 .............................................................................................. 47 2.29.2. 目的 .............................................................................................. 47 2.29.3. 主要特点 ...................................................................................... 47 2.30. HYBTOK-II(日本名古屋大学) ............................................. 48 2.30.1. 简介 .............................................................................................. 48 2.30.2. 目的 .............................................................................................. 48 2.30.3. 主要特点 ...................................................................................... 48 2.31. TOKASTAR-2(日本名古屋大学) ............................................. 49 2.31.1. 简介 .............................................................................................. 49 2.31.2.目的 ................................................................................................ 49 2.31.3. 主要特点 ...................................................................................... 49 2.32. JT-60SA(日本国立量子放射科学技术研究所) ........................................ 50 2.32.1. 简介 ............................................................................................. 50 2.32.2. 目的 ............................................................................................. 50 2.32.3. 主要特点 ............................................................................................. 50 2.33. TST-2(日本东京大学) ............................................................. 51 2.33.1. 简介 ............................................................................................. 51 2.33.2. 目的 ............................................................................................. 51........................................................................... 48 2.31. TOKASTAR-2(日本名古屋大学) .............................................. 49 2.31.1. 简介 .............................................................................................. 49 2.31.2. 目的 .............................................................................................. 49 2.31.3. 主要特点 ...................................................................................... 49 2.32. JT-60SA(日本国立量子放射科学技术研究所) ............................................. 50 2.32.1. 简介 ............................................................................................. 50 2.32.2. 目的 ............................................................................................. 50 2.32.3. 主要特点 ............................................................................................. 50 2.33. TST-2(日本东京大学) ............................................................. 51 2.33.1. 2.33.2. 简介 ................................................................................................ 51 2.33.2. 目的 .............................................................................................. 51........................................................................... 48 2.31. TOKASTAR-2(日本名古屋大学) .............................................. 49 2.31.1. 简介 .............................................................................................. 49 2.31.2. 目的 .............................................................................................. 49 2.31.3. 主要特点 ...................................................................................... 49 2.32. JT-60SA(日本国立量子放射科学技术研究所) ............................................. 50 2.32.1. 简介 ............................................................................................. 50 2.32.2. 目的 ............................................................................................. 50 2.32.3. 主要特点 ............................................................................................. 50 2.33. TST-2(日本东京大学) ............................................................. 51 2.33.1. 2.33.2. 简介 ................................................................................................ 51 2.33.2. 目的 .............................................................................................. 51
民用聚变需要能够承受聚变等离子体反应堆内部恶劣环境的结构材料。结构材料通常在 14.1 MeV 快中子下嬗变,产生氦 (He),而氦会使晶界 (GB) 网络变脆。本文表明,具有原子级自由体积的中子友好且机械强度高的纳米相可以具有低 He 嵌入能 emb 和 > 10 at.% He 吸收能力,并且在抵抗辐射损伤和蠕变的基础上特别有利于吸收 He,前提是它们具有与基质相的热力学兼容性、令人满意的平衡润湿角以及足够高的熔点。初步实验证明, emb 是纳米异相材料中 He 屏蔽效力的良好从头算预测因子,因此, emb 被用作计算筛选的关键特征。在此背景下,列出了一系列有望成为良好 He 吸收纳米相的可行化合物,其中考虑了 emb 、中子吸收和活化截面、弹性模量、熔化温度、热力学兼容性以及纳米相的平衡润湿角(以 Fe 基质为例)。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要 和平建设曾经为人类寻求核聚变提供动力;现在它仍然可以。本文通过应用非杀伤性全球政治科学和平建设框架、五螺旋技术创新生态系统模型和最近的路径依赖理论,分析了燃烧等离子体聚变突破对加剧冲突和建设和平的巨大影响。第一次燃烧等离子体将是一个前所未有的历史事件,最接近的类似事件是三位一体测试;我们从路径依赖的角度分析测试,将其与核聚变进行比较。与核裂变一样,核聚变将因其内在优势而被武器化。然而,导致核聚变的创新并非无人注意。与在战时秘密进行的三位一体不同,核聚变是在和平时期开发的,以协助低碳转型。在核裂变方面,尽管最初取得了进展,但苏联在二战后立即拒绝了美国的巴鲁克计划,该计划将原子能和武器置于联合国之下,以遏制核军备竞赛。结果就是冷战。同样,我们预测全球将迎来一个关键时刻,通过新的巴鲁克计划可以建立起新的规范核秩序,从而达成一项全球和平条约,人类也将重新确定本世纪的目标。
聚变能源科学与技术 DPhil 课程通常在经验丰富的教职员工的监督下进行,为期四年。课程详情,包括培训机会(学术课程、研究特定技能和通用可转移职业技能)和进阶要求,可在当前版本的材料研究生课程手册中找到,更多详情可在“Fusion CDT”网站(https://fusion-cdt.ac.uk/study-with-us/)上找到。特别要注意的是,聚变能源科学与技术 DPhil 课程的学生需要在前八个月和第二年离开牛津大学一段时间,并分别在牛津大学学习八到十二周,参加 Fusion CDT 教学课程和“Collaboratory”项目。
摘要:本文介绍了 ITER 和 DEMO 级反应堆将使用的主要材料的路线图,并概述了近年来最相关的创新。EUROfusion 开发计划中 FW(第一壁)的主要思想是使用低活化材料。到目前为止,已经提出了几种候选材料:RAFM 和 ODS 钢、SiC/SiC 陶瓷复合材料和钒合金。接下来,将描述最相关的诊断系统和 PFM(面向等离子体的材料),并附上材料选择的相应理由及其主要特性。最后,将对 DEMO 概念设计下一阶段将要开展的未来材料开发活动进行展望,这在很大程度上取决于 IFMIF-DONES 设施的成功,本文还描述了该设施的设计、运行和目标。
• 重复劳动的风险——随着全尺寸核聚变发电站的设计和规划不断发展,获得建设和运营核电站的同意和许可的过程可能会变得更加复杂。开发定制流程和培训监管机构来监督核聚变行业监管框架,可能会造成 ONR 现有能力的重复,从而给纳税人带来不划算的收益。
• 重复劳动的风险——随着全尺寸核聚变发电站的设计和规划不断发展,获得建设和运营核电站的同意和许可的过程可能会变得更加复杂。开发定制流程和培训监管机构来监督核聚变行业监管框架,可能会造成 ONR 现有能力的重复,从而给纳税人带来不划算的收益。
本文件是作为美国政府资助工作的记录而编写的。尽管本文件被认为包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国的观点和意见。