在太阳系中。理论认为,太阳形成后,有冷物质盘围绕太阳旋转。这些冷物质盘形成了行星。科学家认为其他恒星周围也一定发生了这种情况。
在 OMEGA 激光系统上进行的综合磁化衬套惯性聚变 (MagLIF) 实验旨在研究激光预热对内爆性能的影响。在模拟和实验中,用激光预热燃料都会提高中子产量,最大产量发生在最佳预热激光能量下。将预热能量增加到超过最佳值会降低中子产量。在模拟中,中子产量下降的速度取决于是否纳入能斯特效应。在 OMEGA 上的 MagLIF 预热阶段,能斯特效应会将磁场从燃料区域中心移出,并削弱磁通压缩。如果不包括能斯特效应,则模拟的超过最佳预热激光能量的产量下降将更加平缓,而不是实验中看到的急剧下降。模拟能够模拟实验中看到的测量离子温度的趋势。混合模型表明,在模拟燃料区域中加入来自壁面的混合会进一步降低产量并降低最佳预热激光能量。混合模拟预测,增加初始轴向磁场仍可能提高集成内爆的产量性能。
核聚变长期以来一直被认为是一种理想的太空推进方法,因为它具有极高的燃料比能(比最好的化学燃料高 + 2 # 10 6)和排气速度(+ 4% 的光速,而最好的化学燃料为 + 4 公里/秒)。这种高性能将允许在参与研究人员的一生中快速完成行星际任务以及星际任务。1然而,聚变推进存在两个主要困难:点燃自持聚变链式反应的困难以及反应产生的大量电离辐射,这需要相当大的屏蔽质量来抵御这种辐射。1本摘要介绍了一种独特但众所周知的核物理技术“自旋极化”的能力,它可降低点火要求和航天器必须处理的电离辐射通量。
使用激光驱动离子束的快速点火惯性聚变能 执行摘要 离子快速点火 (IFI) 或由激光驱动离子束引发的聚变快速点火是实现高增益惯性聚变能 (IFE) 的一条有前途的途径 [1,2]。在 IFI 中,首先使用激光或脉冲功率驱动器组装冷的、致密的氘氚 (DT) 燃料。然后,高功率离子束聚焦到燃料内的一小块体积(热点),迅速将燃料加热到发生聚变点火的状态。该热点中的聚变燃烧会传播到热点周围的燃料,导致该燃料的很大一部分燃尽,并且有可能实现惯性聚变能所需的高增益 (G~100)。IFI 对燃料压缩和点火两个基本元素使用单独的驱动器,从而最大程度地控制和优化每个元素。另一方面,传统的激光聚变使用同一驱动器的多束光束来压缩燃料并对其中心进行冲击加热以点燃燃烧波。尽管传统激光聚变取得了令人瞩目的进展,但高增益和 IFE 所需的精确空间对称性、时间脉冲整形和定时仍然是一项尚未解决的严重挑战。过去二十年来,激光离子加速和聚焦方面取得了重大进展,国家点火装置 (NIF) 上演示的 DT 燃料高密度压缩表明了 IFI 概念的基本可行性。作为一种有前途的补充方法,IFI 是一个值得优先研究的方向,因为它为 IFE 的成功提供了一条替代途径,其风险状况与传统激光驱动聚变不同。然而,它利用并促进了许多相同科学和技术的发展。然而,需要进一步的研发投入来解决 IFI 中的关键技术差距。实现离子快速点火的两种不同方法显而易见:使用通过重入锥聚焦到热点的低 Z 离子,以及使用在胶囊外部产生的高 Z 离子。两者都有优点和缺点,需要通过开发燃料组件和点火的点设计进行检查,同时评估各种权衡(例如激光等离子体不稳定性 (LPI) 风险、效率、稳健性)。这种检查将指导定义关键的把关指标,以证明进一步开发的合理性、核心能力的进一步开发以及关键指标的同时实验演示。引言离子快点火可能是高增益惯性聚变能量生产的可行途径 [1,2]。为了实现 IFI,首先使用传统惯性约束聚变 (ICF) 技术(例如激光驱动压缩(直接或间接驱动)或脉冲功率驱动器)将大量氘氚燃料组装成高密度(~500 g/cm 3)。然后,高流离子束,由一个或多个高强度激光束与转换器靶相互作用产生的激光,被导向燃料内的热点体积,以便等容加热热点燃料(即,没有流体动力学
2021 年 8 月 8 日,美国国家点火装置 (NIF) 创纪录的实验从内爆氘氚 (DT) 胶囊中释放出 1.35MJ 的能量,显示出 0.7 的聚变增益和强劲燃烧的等离子体。虽然这些实验和 NIF 设施并非旨在开发惯性聚变能 (IFE) 的物理学和工程学,但结果对于 IFE 的氘氚惯性约束聚变 (ICF) 物理平台的风险评估具有变革性意义。开发基于 IFE 的发电厂仍是一项十年的努力,我们面前还有许多技术挑战。但有了这种可行性证明和无碳、地理位置独立的发电厂技术的前景,建立对所有高风险和长期发展支持技术的全面研发工作至关重要。要使 IFE 成为有吸引力的能源,需要开发可靠、经济高效的高功率半导体激光器,作为高能聚变驱动激光器经济和技术上可行的泵浦源。
美国所有主要终端使用领域的能源消费均稳步增长,其中电力和天然气增长最快。2017 年全球电力需求增长了 3.1%,其中中国和印度占增长的 70%。自 1950 年以来,美国的发电量增长了 13 倍,2018 年创下了 4% 的增长记录。尽管受新冠疫情影响导致能源需求减少(2019 年至 2020 年下降约 6%),但能源部门脱碳以及实现主权和不受天气影响的能源上网的需求从未如此迫切。惯性聚变能 (IFE) 提供了一种无碳能源的前景,其燃料供应几乎无限。与核裂变不同,聚变发电厂不会产生大量需要长期处置的高放射性核废料。劳伦斯利弗莫尔国家实验室的国家点火装置 (NIF) 最近取得突破,实现了 1.35 MJ 的聚变产量,超过点火所需增益的 70%,表明等离子体燃烧强劲。它将 ICF 和 DT 物理平台推向了聚变点火的门槛。美国的三项主要研究工作围绕驱动内爆和实现所需的高能量密度等离子体条件的三大能源展开: