有些公司我们会错过,因为我们还不了解它们,或者它们拒绝参与。这项调查应被视为时间的快照;是对 2021 年第二季度进行调查时行业的概览。逐年重复这项活动将使我们能够看到情况的发展。许多私营聚变公司都是聚变工业协会的成员,但这不是报告的要求,我们在调查中也没有对会员和非会员区别对待。会员资格在公司页面上以 FIA 会员徽章标记。成为 FIA 会员要求公司制定聚变商业化计划,展示私人投资以支持其使命,并缴纳会费。在聚变行业中发挥支持作用的公司可以作为附属会员加入,但这些行业更广泛的公司不是本报告的主题。
• 2000 年夏天,我是 SULI/NUF 的学生。 • 那个夏天,我的研究项目是麻省理工学院的磁约束聚变(MCF)托卡马克装置。--低密度,长时间尺度 • 我还在劳伦斯利弗莫尔国家实验室(LLNL)度过了两个夏天,研究间接驱动惯性约束聚变(ICF)。--高密度,短时间尺度 • 被聚变“虫”咬了之后,我去了普林斯顿大学读研究生,并在 PPPL 有一间办公室。 • 我的论文研究方向是 ICF 的一个子领域,称为重离子聚变(用强带电粒子束取代激光)。 • 我研究生涯的总体目标是提高等离子体科学模拟代码的预测能力。我认为自己是一名进行数值实验的计算物理学家。
2024 年 6 月 6 日生效的替代众议院法案 1924《清洁能源技术——聚变能源》(SHB 1924)指示能源设施选址评估委员会 (EFSEC) 和卫生部 (DOH) 建立一个由州政府机构组成的聚变能源工作组,包括但不限于商务部、生态部、州长办公室和军事部,以确定和评估用于生产聚变能源的新旧许可、选址、许可和注册途径(启动工作后,工作组邀请劳工和工业部加入)。SHB 1924 指示聚变能源工作组在整个过程中让受监管社区参与进来。工作组的初步报告应于 2024 年 12 月 1 日前提交给州长和立法机构。
(865) 298-5901 兴趣:主要兴趣包括聚变工程/材料研究和裂变燃料开发。重点是热工水力学、CFD、传热和中子学。其他兴趣包括电力转换技术、高温材料、物理和化学气相沉积、电子束和加速器、粒子传输和辐射损伤。教育:博士核工程,1989 年 8 月 宾夕法尼亚州立大学 核工程硕士,1984 年 8 月 宾夕法尼亚州立大学 核工程学士,1982 年 5 月 宾夕法尼亚州立大学 相关 聚变公私合作伙伴关系协调员 经历 聚变能源创新网络 INFUSE 主任 橡树岭国家实验室 2020 年至今 杰出科学家 – 聚变能源部门 聚变技术组 橡树岭国家实验室 2015 – 2020 杰出成员技术人员 – 电磁和辐射效应模拟 桑迪亚国家实验室,1353 部 2013 - 2015 杰出成员技术人员——面向等离子体的组件和材料的设计和测试 桑迪亚国家实验室,1658 部 1994 年 11 月 - 2013 年1994
1 Baramsai 等人,“NASA 实现聚变能的新捷径:晶格约束聚变无需使用大型磁铁和强力激光器”,IEEE Spectrum(2022 年 3 月)。https://spectrum.ieee.org/lattice-confinement-fusion
氟化氩 (ArF) 是目前波长最短的激光器,能够可靠地扩展到高增益惯性聚变所需的能量和功率。ArF 的深紫外光和提供比其他当代惯性约束聚变 (ICF) 激光驱动器更宽带宽的能力将大大提高激光目标耦合效率,并使驱动内爆的压力大大提高。我们的辐射流体动力学模拟表明,使用亚兆焦耳 ArF 驱动器可以获得大于 100 的增益。我们的激光动力学模拟表明,电子束泵浦 ArF 激光器的固有效率可以超过 16%,而效率第二高的氟化氪准分子激光器的固有效率约为 12%。我们预计,使用固态脉冲功率和高效电子束传输到激光气体(美国海军研究实验室的 Electra 设施已进行了演示),将 ArF 光传输到目标的“电插式”效率至少应达到 10%。这些优势可以推动开发尺寸适中、成本较低的聚变发电厂模块。这将彻底改变目前对惯性聚变能源过于昂贵和发电厂规模过大的看法。本文是讨论会议主题“高增益惯性聚变能源前景(第 1 部分)”的一部分。
民用聚变需要能够承受聚变等离子体反应堆内部恶劣环境的结构材料。结构材料通常在 14.1 MeV 快中子下嬗变,产生氦 (He),而氦会使晶界 (GB) 网络变脆。本文表明,具有原子级自由体积的中子友好且机械强度高的纳米相可以具有低 He 嵌入能 emb 和 > 10 at.% He 吸收能力,并且在抵抗辐射损伤和蠕变的基础上特别有利于吸收 He,前提是它们具有与基质相的热力学兼容性、令人满意的平衡润湿角以及足够高的熔点。初步实验证明, emb 是纳米异相材料中 He 屏蔽效力的良好从头算预测因子,因此, emb 被用作计算筛选的关键特征。在此背景下,列出了一系列有望成为良好 He 吸收纳米相的可行化合物,其中考虑了 emb 、中子吸收和活化截面、弹性模量、熔化温度、热力学兼容性以及纳米相的平衡润湿角(以 Fe 基质为例)。
第二项战略行动是建立创新研究引擎生态系统,以在基础科学活动(例如技术就绪水平 [TRL]~ 1-2)与更成熟的开发(TRL ~ 3-4)之间架起桥梁,并在科学与由不断发展的聚变行业定义和启发的早期技术开发之间架起桥梁(例如里程碑计划获奖者的技术路线图)。图 2 说明了 FIRE 协作活动如何融入 SC FES 计划。 “引擎”生态系统将 SC FES 基础计划内的孵化活动与支持向工业转化的聚变技术加速联系起来。后者得到了公私合作伙伴关系的支持,并辅以其他公私合作伙伴关系元素,例如聚变能源联盟(参见战略#3),它通过降低聚变材料和技术 (FM&T) 差距的风险来帮助加速聚变能源的发展。
使用激光驱动离子束的快速点火惯性聚变能 执行摘要 离子快速点火 (IFI) 或由激光驱动离子束引发的聚变快速点火是实现高增益惯性聚变能 (IFE) 的一条有前途的途径 [1,2]。在 IFI 中,首先使用激光或脉冲功率驱动器组装冷的、致密的氘氚 (DT) 燃料。然后,高功率离子束聚焦到燃料内的一小块体积(热点),迅速将燃料加热到发生聚变点火的状态。该热点中的聚变燃烧会传播到热点周围的燃料,导致该燃料的很大一部分燃尽,并且有可能实现惯性聚变能所需的高增益 (G~100)。IFI 对燃料压缩和点火两个基本元素使用单独的驱动器,从而最大程度地控制和优化每个元素。另一方面,传统的激光聚变使用同一驱动器的多束光束来压缩燃料并对其中心进行冲击加热以点燃燃烧波。尽管传统激光聚变取得了令人瞩目的进展,但高增益和 IFE 所需的精确空间对称性、时间脉冲整形和定时仍然是一项尚未解决的严重挑战。过去二十年来,激光离子加速和聚焦方面取得了重大进展,国家点火装置 (NIF) 上演示的 DT 燃料高密度压缩表明了 IFI 概念的基本可行性。作为一种有前途的补充方法,IFI 是一个值得优先研究的方向,因为它为 IFE 的成功提供了一条替代途径,其风险状况与传统激光驱动聚变不同。然而,它利用并促进了许多相同科学和技术的发展。然而,需要进一步的研发投入来解决 IFI 中的关键技术差距。实现离子快速点火的两种不同方法显而易见:使用通过重入锥聚焦到热点的低 Z 离子,以及使用在胶囊外部产生的高 Z 离子。两者都有优点和缺点,需要通过开发燃料组件和点火的点设计进行检查,同时评估各种权衡(例如激光等离子体不稳定性 (LPI) 风险、效率、稳健性)。这种检查将指导定义关键的把关指标,以证明进一步开发的合理性、核心能力的进一步开发以及关键指标的同时实验演示。引言离子快点火可能是高增益惯性聚变能量生产的可行途径 [1,2]。为了实现 IFI,首先使用传统惯性约束聚变 (ICF) 技术(例如激光驱动压缩(直接或间接驱动)或脉冲功率驱动器)将大量氘氚燃料组装成高密度(~500 g/cm 3)。然后,高流离子束,由一个或多个高强度激光束与转换器靶相互作用产生的激光,被导向燃料内的热点体积,以便等容加热热点燃料(即,没有流体动力学
许多公司都在研究聚变推进概念,包括加州理工学院的衍生公司 Helicity Space,该公司正在开发一种可扩展的脉冲概念,可直接利用聚变产物。其他公司包括由高盛和其他公司投资 8.8 亿美元的 TAE Tech、由盖茨和其他公司投资 2.5 亿美元的 Commonwealth Fusion Systems、由杰夫·贝佐斯和其他公司投资 2 亿美元的不列颠哥伦比亚省的 General Fusion、由天使投资者投资 8000 万美元的 Helion Energy 以及由雪佛龙投资 1000 万美元的 Zap Energy。鉴于即使在实验室规模下也未实现持续的长时间聚变,因此与 NTP 系统相比,聚变仍然明显不成熟。然而,基于其在任务上的优势、商业公司对较新的设计和快速生产技术的使用、以及它们最近获得风险投资基金的验证,聚变推进最终可能成为中远期可靠的技术。