progranulin和TDP-43神经退行性疾病之间的缺失联系,其无情进行的临床课程和稀疏的治疗选择,负责全球范围内的大量发病率和死亡率。这些疾病是通过进行性运动和/或认知功能障碍在临床上表征的,并在病理上通过在脆弱的神经元种群中堆积错误的蛋白质在病理上表征。与神经退行性条件相关的大多数遗传突变直接影响产生,溶解度,细胞内定位或骨料易发蛋白的周转率。但是,ftld-grn是一个显着的例外。在TDP-43夹杂物(FTLD-TDP)的额颞叶脱发子集中,患者在GRN中具有杂合性损失 - 功能突变,从而导致秘密蛋白蛋白预化蛋白的单倍弥补。预胰岛素单倍氨酸导致神经变性的机制和特征性的TDP-43蛋白聚集体仍然是一个重要但未解决的问题。
激光捕获显微切割 (LCM) 是一种用于从组织切片中选择和获取细胞簇的新方法。一旦捕获,DNA、RNA 或蛋白质就可以轻松地从分离的细胞中提取出来,并通过常规 PCR、逆转录 (RT)-PCR 或聚丙烯酰胺凝胶电泳进行分析,包括蛋白质酶谱分析特定的大分子变化。在 LCM 中,附着在刚性支撑物上的热塑性聚合物涂层 [乙烯醋酸乙烯酯 (EVA)] 与组织切片接触。近红外激光脉冲精确激活微观选择的细胞簇上的 EVA 聚合物,然后将其结合到目标区域。从组织切片上移除 EVA 及其支撑物可获取选定的细胞聚集体以进行分子分析。这种使用平面转移 EVA 薄膜的初始 NIH LCM 方法最近已商业化,并已被证明是一种有效的常规显微切割技术,可用于许多实验室的后续大分子分析 -
我们通过重编程帕金森氏病患者的SCNA基因三重三次固定(3XSNCA)的帕金森氏病患者的外周血单核细胞产生了IPSC。患者患有少年发作的严重形式的帕金森氏病。CRISPR/CAS9基因编辑来使超核SCNA基因拷贝失活,以使患者的等生IPSC系作为固有的控制细胞。3xSNCA IPSC分化为皮质或多巴胺能神经元培养物,并最终暴露于预先形成的αSyn蛋白组件中,以加速内源性αSyn聚集体的产生。非常明显的是,患者衍生的神经元开发了类似于患者脑组织中通常描述的Lewy身体的FrankαSynperisasic骨聚集体。患者衍生的神经元显示出有限的生存率,代谢功能障碍和明显的基因表达改变,如RNA-SEQ转录组分析所概述。
抽象的体细胞年龄和死亡,但细菌谱系是不朽的。在秀丽隐杆线虫中,种系永生涉及每一代开始时的蛋白质结构,当时卵母细胞成熟信号触发了精子的卵母细胞成熟信号触发碳苯链蛋白和蛋白质聚集物的清除。在这里,我们在全基因组RNAi筛选的背景下探索了这种蛋白质抗体更新的细胞生物学。卵母细胞成熟信号通过溶酶体酸化引发蛋白质聚集的去除。我们的发现表明,溶酶体由于内质网活性的变化而被酸化,允许溶酶体V-ATPase组装,这又允许溶酶体通过微嗜碱性脂蛋白清除聚集体。我们为线粒体定义了两个函数,它们似乎都独立于ATP生成。屏幕上的许多基因还调节体内的溶酶体酸化和年龄依赖性蛋白质聚集,这表明种系中蛋白质的更新与体细胞寿命之间存在基本的机械联系。
细菌 MCC 的原子结构已通过 X 射线晶体学使用在大肠杆菌中表达的带有 His 标签的重组铜绿假单胞菌 MCC (PaMCC rec) 进行解析。22 。PaMCC rec 亚基寡聚化为十二聚体复合物,其核心由六个 β 亚基组成,中间夹着两个 α 三聚体,形成 α 6 β 6 结构 22 。MCC 是否可能以其他形式存在尚不清楚。尽管如此,它们的超分子组装是根据负染色电子显微镜观察到的无色杆菌 IVS MCC 的杆状聚集体推测的 23 。低温电子显微镜 (cryoEM) 的最新进展揭示了意想不到的酶聚合模式,并阐明了此类结构形式的调控作用 24–29 。例如,高分辨率低温电子显微镜结构阐明了几种真核 ACC 30 丝状形式的调控功能。由于缺乏天然 MCC 酶的高分辨率结构,天然 MCC 是否能类似地形成超分子组装体仍未确定。
光致变色分子在光刺激下会改变其物理化学性质,包括吸收光谱、折射率、介电常数和氧化还原电位,具有从光学数据存储到生物成像等多种潜在应用。1–13 光致变色分子的用途可以简单地分为两种类型:作为单分子水平的开关或作为聚集体中的活性元素。具体而言,后者对于开发下一代先进材料非常有趣。例如,聚集体的典型形式之一是晶体。与晶体中的光化学反应相关的单个分子的分子结构变化会导致晶体形状的宏观变化。14–16 这种晶体可用于不需要任何电子线和物理接触的光致动器。聚集体的另一种代表性应用形式是纳米粒子。由光致变色分子和荧光团组成的纳米粒子基于从荧光团到光致变色分子的福斯特共振能量转移,表现出有效的光可逆荧光开/关切换行为。 17,18 这些纳米粒子可用于超分辨率荧光显微镜。此外,最近有报道称,强纳秒脉冲激光激发由
摘要 蛋白质的正确折叠对于维持功能性活细胞至关重要。因此,蛋白质的错误折叠和聚集与多种疾病有关,其中非天然分子间相互作用形成具有低自由能的大型高度有序的淀粉样蛋白聚集体。一个例子是阿尔茨海默病 (AD),其中淀粉样蛋白-β (Aβ) 肽聚集成淀粉样蛋白原纤维,这些原纤维在 AD 患者的大脑中沉积为神经斑块。淀粉样蛋白原纤维的成核是通过形成较小的成核前簇(即所谓的低聚物)进行的,这些低聚物被认为具有特别的毒性,因此在 AD 病理学中具有潜在重要性。Aβ 聚集的详细分子机制知识对于设计针对这些过程的 AD 治疗非常重要。然而,由于低聚物物种的丰度低且多分散性高,因此很难通过实验研究它们。本文使用自下而上的生物物理学在受控的体外条件下研究了 Aβ 低聚物。主要使用天然离子迁移质谱法研究高纯度重组 Aβ 肽,以监测水溶液中低聚物的自发形成。质谱法能够分辨单个低聚物状态,而离子迁移率则提供低分辨率结构信息。这与其它生物物理技术以及理论建模相辅相成。还研究了调节内在因素(如肽长度和序列)或外在因素(如化学环境)的低聚物。研究了与两个重要的生物相互作用伙伴的相互作用:伴侣蛋白和细胞膜。我们展示了 Aβ 低聚物如何组装并形成可能与继续生长为淀粉样蛋白原纤维有关的延伸结构。我们还展示了不同的淀粉样蛋白伴侣蛋白如何与不断增长的聚集体相互作用,从而改变和延迟聚集过程。这些相互作用取决于伴侣和客户肽中的特定序列基序。另一方面,膜模拟胶束能够稳定 Aβ 寡聚体的球状致密形式,并抑制形成淀粉样纤维的延伸结构的形成。这可能有助于体内毒性物质的富集。与膜模拟系统的相互作用被证实高度依赖于 Aβ 肽异构体和膜环境的特性,例如头部电荷。还展示了如何添加设计的小肽结构来抑制膜环境中 Aβ 寡聚体的形成。
(a)实验设置和集成的概述。(b)1p染色体上的信号。左:在 +DSB条件下的单细胞热图(RPKM),其顶部为 +DSB(有色)和–DSB(灰色)条件的单细胞聚集体。右:带有覆盖MSR调用的单细胞线图。asisi主题用黑线注释,红色三角形表示经常裂解(或“顶部”)位点。(c)所有修复频率≥10%的ASISI位点的条形图,每个位点的修复频率(目标蛋白质和方法)颜色为颜色。通过增加绝对修复频率(即任何数据集中的最高频率)来订购(在X轴上)。每个站点,通过增加每个数据集的维修频率(前后;即未堆叠栏)来排序条。底部水平条表示先前的(缺乏)注释作为顶部位点。(d)一个代表性核的共聚焦图像显示DAPI,RAD51 DAMID M6 A-TRACER和内源性γH2AX免疫荧光染色。(e)信号共定位(Manders的A和B每个核)的定量,n = 33核。
具有可视化化学,结构和神经生物学至关重要的纳米级亚细胞结构。尤其是四氧化os已被广泛用于选择性脂质成像。尽管使用无处不在,但脂质膜中的oSmium物种形成以及电子显微镜(EM)中图像对比的机制始终是开放的问题,限制了改善染色方案并改善生物样品的高分辨率成像的努力。以我们最近的成功使用光发射电子显微镜(PEEM)来对小鼠脑组织进行15 nm的亚细胞分辨率图像,我们已经使用PEEM来确定脂质膜中OS染色的化学对比机制。os(iv)以OSO 2的形式产生脂质膜中的聚集体,导致了状态的电子结构和电子密度的强烈空间变化。OSO 2具有金属电子结构,可逐渐增加费米水平附近状态的电子密度。将金属OSO 2沉积在脂质膜上,可以强烈增强生物材料的EM信号。膜对比机械的这种不明显
a,实验设置和集成的概述。b,染色体1p上的信号。左:在 +DSB条件下的单细胞热图(RPKM),其顶部为 +DSB(有色)和–DSB(灰色)条件的单细胞聚集体。右:带有覆盖MSR调用的单细胞线图。asisi图案,用黑线注释,红色三角形表示经常裂解(或“顶部”)位点。c,所有ASISI位点的条形图≥10%,每个位点的修复蛋白频率(靶蛋白和方法)都有颜色。通过增加绝对修复蛋白频率(即,任何数据集中的最高频率)。每个站点,通过增加每个数据集的修复蛋白频率(即前后;即未堆叠)来排序条。底部水平条表示先前的(缺乏)注释作为顶部位点。d,一个代表性核的共聚焦图像,显示DAPI,RAD51 DAMID M6A-Tracer和内源性γH2AX免疫荧光染色。e,信号共定位的定量(manders的a和a和b每个核),n = 33核。