Lin 等 [31] 开发一款基于 VR 的上肢投篮康复系统 , 收集患者的肌电数据 结合肌电反馈 , 基于 VR 的训练可能会显着提高康复疗效 Lakshminara- yanan 等 [47] 15 名参与者在 VR 和非 VR 条件下 , 对 3 项手部运动进行观察 基于 VR 的动作观察 , 可以增强 KMI 诱导的 ERD 反应
1. 胸肌飞鸟和过顶平举:肘部弯曲至 90 度,将肘部抬高至肩部高度,然后向后移动,使其与身体成一线(手臂应看起来像球门柱)。这是您的起始姿势。像做胸肌飞鸟一样将肘部并拢。当肘部/拳头接触(身体中线)时,轻轻将双臂举过头顶。反向练习以回到起始姿势。(目的:此练习用于热身胸部肌肉,并在做过顶动作时增加手臂的活动范围。解释大多数举重运动员的胸部和肱三头肌运动为何紧张,这也是在举重室进行的一项很好的练习。它还将为俯卧撑做好胸部和手臂的准备。)2. 胸部推举/肩部推举:模拟您在身体前方的空中做俯卧撑。回到起始姿势后,继续做过顶肩部推举。确保在肩部推举过程中使用窄手位并保持肘部内收,以确保您锻炼到肱三头肌(后臂)。(目的:此练习用于为俯卧撑和过顶动作(如军事推举)做好准备。确保学生了解肘部必须保持内收。CFL 经常会伸出肘部,用双手的拇指和食指形成三角形。如果他们这样做,他们就不会锻炼到肱三头肌。)3. 小腿提举和颈部旋转:进行站立式小腿提举并旋转头部以查看右肩。向右重复 10 次,然后换位并向左重复 10 次(查看左肩)。 (目的:这项练习用于热身小腿,并提供颈部活动范围。不要让学生将脖子从一侧转到另一侧,否则他们会头晕。他们应该向一侧做 5 次,向另一侧做 5 次)。 4. 脚尖向前轻点:双脚分开与肩同宽站立。逐渐抬起左膝,向外旋转臀部,这样你就可以用右手轻点左脚内侧(你的下半身应该处于“4 字形”位置)。用左手触摸左脚内侧,重复此动作至另一侧。继续左右交替进行此练习。 (目的:这项练习将用于增加臀部的运动范围(尤其是髋部屈曲和外旋)。一定要告诉学生,大多数水手的臀部都很紧,尤其是跑步者,这将提高表现。如果你不这么说,这项练习对他们来说似乎没有效果。)脚尖向后轻拍:双脚分开与肩同宽站立。逐渐将左脚抬到身后(像腿筋弯举一样),用右手轻拍脚。用左手和右脚重复另一侧的动作。(目的:这项练习用于热身腿筋,同时增加股四头肌的活动范围。)5. 向侧面/前方拉线:双脚稍微向外伸开,与肩同宽,半蹲。保持下蹲姿势很重要,这样在练习过程中才能锻炼腿部肌肉。模拟从船上拉线(重复“拔河”动作),重复 4 次,重复一定次数。从左侧、前方和右侧改变位置。(目的:这项练习模拟了水手需要学习的重要技术,尤其是舰队水手。用线
1利兹风湿病研究所,利兹大学,英国利兹大学2 NIHR LEEDS生物医学研究中心,利兹教学医院NHS Trust,NHS NHS Trust,英国利兹,英国3号。英国Thames 5 Norwich练习,英国诺里奇6号卫生中心6风湿病学系,Stockport NHS基金会信托基金会,英国Stockport,英国Stockport 7 Powys教学委员会,英国Brecon,Brecon Bronllys医院8 Norwich医学院,East Anglia,East Anglia,UK 9 Norwich,UK 9 Norwich,UK 9 Norwich,PMRGCAUK,PMRGCAUK,PMRGCAUK,PMRGCAUK,INSPRAIMS NOSSES,普通医院,及其流动性疾病。风湿病学,诺森比亚医疗保健NHS基金会信托基金会,纽卡斯尔,英国泰恩河12号伦敦国王学院和盖伊和盖伊和圣托马斯宠物中心诺福克和诺里奇大学医院NHS基金会信托基金会的风湿病学系,英国诺里奇,与:Max Yates,Norwich医学院,Bob Chambion Research and Education Building,第2楼,East Anglia大学,诺里奇NR4 NR4 7UQ,英国。电子邮件:m.yates@uea.ac.uk电子邮件:m.yates@uea.ac.uk
本指南的目的是协助赞助商在整个疾病范围内治疗医疗产品(即人类药物和治疗生物学产品)的临床开发(即人类药物和治疗生物产品)。此更新的指导是FDA与各自疾病领域的疾病特定社区首次合作的结果。FDA邀请Duchenne社区(包括患者,父母和护理人员,临床医生,学术专家和行业)开发了FDA对良好指导实践规定的解释所提供的早期版本。收到2014年6月25日指南的第一次迭代后,FDA开了案卷并与DMD社区和其他专家举行了进一步的会议,从而根据2015年6月发布的监管和法定要求和其他公开数据进行了修订(请参阅2015年6月(请参阅请参阅参见) https://www.parentprojectmd.org/wp-content/uploads/2021/07/2014_community_guidance.pdf)。这些活动提供了动力,并为FDA奠定了基础,以开发自己对DMD和相关肌营养不良的行业的简化指南,这是特定稀有
这些还原版本的肌营养不良蛋白的共同点是删除了亲本蛋白的中心杆状区域和 C 末端结构域,而保留了蛋白质的基本功能结构域,特别是富含半胱氨酸 (CR) 的结构域。
抽象运动神经元是大脑对身体骨骼肌的控制的神经元。运动神经元疾病是以运动神经元进行性变性为特征的罕见的异质性神经系统疾病组。一名被诊断为运动神经元疾病的55岁妇女于2023年2月11日被接纳为Vaidyaratnam Ayurveda College Hospital,持续了21天,表达了两种与肌肉浪费两肢相关的弱点,主要是在1年以来右肩和腕部。临床和实验室特征表明,诊断为ALS的区域变体的肱肌分哲症。根据阿育吠陀的说法,发现Avarana vatavyadhis与运动神经元疾病非常相似,她的症状可能与Kaphavruta Vyanavata相关。患者接受了Avaranagna和Vata Vyadhi Chikitsa。对患者的评估是通过体格检查,ALSFRS-R和NEURO QOL量表进行治疗前后进行的。随着上肢的强度和生活质量的逐渐增长,观察到令人满意的改进。此案例研究表明,可以通过阿育吠陀治疗对臂肌分哲症的伴则可以进行症状。
摘要 背部轴肌或称背轴肌是覆盖脊髓和椎骨以及活动脊椎动物躯干的基本结构。迄今为止,形成背轴肌节的形态发生过程的潜在机制尚不清楚。为了解决这个问题,我们使用了青鳉 zic1/zic4 增强子突变体双臀鳍 ( Da ),它表现出腹侧化的背部躯干结构,导致背轴肌节形态受损和神经管覆盖不完全。在野生型中,背部皮肌节 (DM) 细胞在体节发生后降低其增殖活性。随后,一部分未分化为肌节群的 DM 细胞开始形成独特的大突起,向背部延伸以引导背轴肌节向背部运动。相反,在 Da 中,DM 细胞保持高增殖活性并主要形成小突起。通过结合 RNA 和 ChIP 测序分析,我们揭示了 Zic1 的直接靶标,这些靶标在背部体节中特异性表达,并参与发育的各个方面,例如细胞迁移、细胞外基质组织和细胞间通讯。其中,我们确定 wnt11 是调节 DM 细胞增殖和前伸活动的关键因子。我们提出,背侧肌节的背部延伸由非成肌性 DM 细胞亚群引导,并且 wnt11 使 DM 细胞能够驱动背侧肌节覆盖神经管。
本研究旨在评估使用最新一代等速测力计进行的躯干肌肉力量测试的有效性和重测信度。在 15 名健康受试者中测量了躯干屈肌和伸肌的离心、等长和向心峰值扭矩。肌肉横截面积 (CSA) 和表面肌电图 (EMG) 活动分别与竖脊肌和腹直肌的峰值扭矩和亚最大等长扭矩相关。在测试和重测期间确定了峰值扭矩测量的可靠性。对于所有收缩类型,肌肉 CSA 与峰值扭矩之间始终存在显著相关性(r = 0.74 � 0.85;P < 0.001),对于伸肌和屈肌,EMG 活动与亚最大等长扭矩之间也存在显著相关性(r P 0.99;P < 0.05)。组内相关系数在 0.87 和 0.95 之间,所有收缩模式的标准测量误差均低于 9%。测试和重测之间的峰值扭矩平均差异范围为 � 3.7% 至 3.7%,没有显著的平均方向偏差。总体而言,我们的研究结果证实了使用测试的躯干模块进行扭矩测量的有效性。此外,考虑到峰值扭矩测量的出色重测信度,我们得出结论,这款最新一代等速测力计可以放心用于评估躯干肌肉功能,以用于临床或运动目的。� 2014 Elsevier Ltd. 保留所有权利。
摘要 裂纹控制策略已被证明对于增强基于金属薄膜的可拉伸导体的拉伸能力非常有用。然而,现有的策略往往存在制备复杂和有效方向预定的缺点。在这里,我们提出了一种裂纹补偿策略,用于制备具有高拉伸性的导体,即使用液态金属微粒 (LMMPs) 嵌入聚二甲基硅氧烷 (PDMS) 作为基底,在其表面溅射一层薄薄的金 (Au) 薄膜。LMMPs 在拉伸时可以拉长以连接破裂的金膜,这可以形成导电的“岛-隧道” (IT) 结构以补偿裂纹并保持导电性。通过使用可拉伸导体作为电极记录人体肱桡肌表面肌电图并监测正常和癫痫状态下大鼠的皮层电图信号,证明了可拉伸导体的高性能。所开发的策略显示出为柔性电子产品的制造提供新视角的潜力。
