[1] MILLER DL, SMITH NB, BAILEY MR 等。治疗性超声应用和安全注意事项概述[J]。超声医学杂志,2012,31 (4): 623-634。[2] WANG J, ZHENG Z, CHAN J 等。用于血管内超声成像的电容式微机械超声换能器[J]。微系统纳米工程,2020,6 (1): 73。[3] JIANG X, TANG HY, LU Y 等。基于与 CMOS 电路键合的 PMUT 阵列的发射波束成形超声指纹传感器[J]。IEEE 超声铁电频率控制学报,2017,PP (9): 1-1。[4] CHEN X, XU J, CHEN H 等。利用多频连续波的 pMUT 阵列实现高精度超声测距仪[J]。微机电系统,2019 年。[5] CABRERA-MUNOZ NE、ELIAHOO P、WODNICKI R 等人。微型 15 MHz 侧视相控阵换能器导管的制造和特性[J]。IEEE 超声铁电和频率控制学报,2019 年:1-1。[6] LU Y、HEIDARI A、SHELTON S 等人。用于血管内超声成像的高频压电微机械超声换能器阵列[S]。IEEE 微机电系统国际会议;2014 年。[7] ZAMORA I、LEDESMA E、URANGA A 等人。用于成像应用的具有 +17 dB SNR 的单片 PMUT-on-CMOS 超声系统[J]。 IEEE Access,2020,页(99):1-1。[8] JUNG J,LEE W,KANG W 等。压电微机械超声换能器及其应用综述[J]。微机械与微工程杂志,2017,27 (11):113001。[9] BERG S,RONNEKLEIV A。5F-5通过引入有损顶层降低CMUT阵列中膜之间的流体耦合串扰[S]。超声波研讨会;2012年。[10] LARSON J D。相控阵换能器中的非理想辐射器[S]。IEEE;1981年。[11] NISTORICA C、LATEV D、SANO T 等。宽带宽、高灵敏度的高频压电微机械换能器[S]。 2019 IEEE 国际超声波研讨会(IUS);2019: 1088-1091。[12] 何丽梅,徐文江,刘文江等。基于三维有限元仿真的二维阵列压电微机械超声换能器性能和串扰评估[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[13] PIROUZ A、MAGRUDER R、HARVEY G 等。基于 FEA 和云 HPC 的大型 PMUT 阵列串扰研究[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[14] DZIEWIERZ J、RAMADAS SN、GACHAGAN A 等。一种用于NDE应用的包含六边形元件和三角形切割压电复合材料子结构的2D超声波阵列设计[S]。超声波研讨会;2009年。[15]徐婷,赵玲,姜哲,等。低串扰、高阻抗的压电微机械超声换能器阵列设计
冷战期间,欧洲北约盟国的国防支出平均占国内生产总值的 3% 以上,且随时间变化。冷战结束后,西方国家不仅大幅削减国防开支,还将军事研发削减 25% 或更多。从 2005 年到 2017 年,欧洲研发支出占国防总支出的比例从 5% 降至 3.5%。根据欧洲防务局的数据,2022 年,欧盟 (EU) 国防总支出为 2400 亿欧元,其中研发支出增加到 3.9%,即 95 亿欧元。然而,尽管最近国防总支出和国防研发支出都有所增加,但国防研发投资并未获得应有的收益。 2022 年,欧盟成员国在国防研发上花费了 35 亿欧元,占其国防总开支的 1.5%,高于 2011 年的 1.1%,但比 2021 年下降了 0.2%。这远低于 2017 年启动的欧盟安全与防务领域永久性结构性合作 (PESCo) 框架中设定的目标,即至少将国防总开支的 2% 投资于研究和技术。目前只有两个欧盟成员国实现了 2% 的目标,该目标于 2007 年 11 月在 EDA 部长级指导委员会上首次达成。以法国为首,这两个国家占欧盟国防研发总开支的 80% 以上。
脑类器官是模拟大脑某些三维 (3D) 细胞结构和功能方面的重要模型。能够记录和刺激电生细胞活动的多电极阵列 (MEA) 为研究脑类器官提供了显著的潜力。然而,传统的 MEA 最初是为单层培养而设计的,记录接触面积有限,仅限于 3D 类器官的底部。受脑电图帽形状的启发,我们开发了用于类器官的微型晶圆集成 MEA 帽。光学透明的外壳由自折叠聚合物小叶和导电聚合物涂层金属电极组成。通过力学模拟指导的微型胶囊聚合物小叶的可调折叠,可以实现对不同大小的类器官进行多功能记录,并且我们验证了对 400 至 600 m 大小的类器官进行长达 4 周的电生理记录以及对谷氨酸刺激的反应的可行性。我们的研究表明,3D 壳 MEA 为高信噪比和 3D 时空脑类器官记录提供了巨大潜力。
摘要 量子纠缠为研究原子核等强相关系统的底层结构提供了独特的视角。在本文中,我们使用量子信息工具分析核壳模型中轻和中等质量的铍、氧、氖和钙同位素的结构。我们对壳模型价空间的不同均分采用不同的纠缠度量,包括单轨道纠缠、互信息和冯诺依曼熵,并确定与核单粒子轨道的能量、角动量和同位旋相关的模式纠缠模式。我们观察到单轨道纠缠与价核子的数量和壳层的能量结构直接相关,而互信息则突显了质子-质子和中子-中子配对的迹象。质子和中子轨道在所有测量中都是弱纠缠的,事实上,在所有可能的价态空间均分中,它们的冯·诺依曼熵最低。相反,具有相反角动量投影的轨道具有相对较大的熵。这一分析为设计更高效的量子算法以应对嘈杂的中尺度量子时代提供了指导。
摘要:电弧增材制造 (WAAM) 是一种基于气体保护金属电弧焊的增材制造工艺。它允许通过控制焊珠的沉积和堆叠来制造大体积金属部件。除了近净成形的金属部件制造外,WAAM 还应用于结构部件(例如壳体几何形状)的局部加固。然而,此过程可能会导致不希望的热诱导变形。在这项工作中,通过实验和瞬态热机械有限元模拟研究了半圆柱壳体几何形状的 WAAM 加固引起的变形。在实验中,将焊珠施加到样品上,同时使用热电偶测量其热历史。使用位移传感器记录正在发生的变形。实验数据用于校准和验证模拟。使用经过验证的模型,可以预测样品的温度场和变形。随后,使用模拟来评估不同的沉积模式和壳体厚度与由此产生的部件变形之间的关系。调查显示,壳体厚度与变形之间存在非线性关系。此外,焊道的方向和顺序对变形的形成有显著影响。然而,这些影响随着壳体厚度的增加而减弱。
高胚胎死亡率令人担忧,因为这会影响商业鸵鸟养殖。通过对孵化雏鸟进行适当的干预,可以提高存活雏鸟的数量。从南非奥茨胡恩研究农场的商业配对繁殖鸵鸟群中收集了 2,683 枚受精蛋的数据,其中报告了 169 只雏鸟。受精蛋在孵化第 41、42 和 43 天被随机分成三组。共有四种处理方法:达到高潮并自行破壳的雏鸟(T1)、在出现第一次外部啄壳迹象时被协助达到高潮的雏鸟(T2)、在出现第一次外部啄壳迹象时从蛋壳中取出的雏鸟(T3)以及 43 天后在内部啄壳但未能在外部啄壳的蛋破裂(T4)。孵化时进行了临床测量(心率、体温和水肿)。雏鸡在第 7 天称重,然后在第 28、84、147、227、300 和 365 天称重。在内啄后得到帮助的雏鸡孵化时间更长。自行孵化的雏鸡心率为每分钟 115 次 (bpm),低于其他治疗组的 132 次/分钟。孵化后第二天,雏鸡体重下降了约 4%。第一周,雏鸡体重从 0.85 公斤增加到 1.11 公斤。在 147 天时,与蛋壳破裂的雏鸡相比,在两次治疗之间自行孵化的雏鸡体重高出 12.6%,而外啄后去除蛋壳的雏鸡体重高出 24.6%。雏鸡通过达到高潮而受益,但对于难以孵化的雏鸡,这项研究为孵化场操作员提供了在特定阶段进行监测和协助对于提高孵化率至关重要的指导。
2020 年至 2021 年,中国科学院武汉植物园和英国皇家植物园的研究人员在英国、西班牙和中国收集了 20 种壳斗科植物的橡子。他们模拟了动物进食的影响,小心地去除了高达 96% 的橡子营养储备,但不损害胚胎。然后种植受影响的种子,并监测其从发芽到幼苗生长的发育情况。这项研究发表在《生态学杂志》上。
在过去的几十年中,已经开发了一个假定的固体 - 壳有限元素的家族,并具有固体和壳有限元素的丰富益处以及特殊处理,以避免锁定现象。这些元素已被证明在具有各种本构模型的薄3D结构的数值模拟中是有效的。当前的贡献包括发达的线性和二次固体 - 壳元素与铝合金的复杂各向异性可塑性模型的组合。常规二次各向异性产量函数与涉及强各向异性的金属材料形成过程的模拟中的准确性较小。对于这些材料,可以使用晚期非二次产量功能(例如Barlat针对铝合金提出的各向异性产量标准)对塑料各向异性进行建模。在这项工作中,将各种二次和非季度各向异性屈服函数与线性八节点六个节六个固体 - 壳元素和线性六节点棱柱形固体 - 壳元素以及它们的二次对应物结合使用。将所得的固体 - 壳元素实现到Abaqus软件中,以模拟圆柱杯的基准深度绘图过程。对预测结果进行了评估,并将其与文献中获得的实验结果进行了比较。与使用常规二次各向异性产量函数相比,由开发的固体 - 壳元素与非二次各向异性产量功能的组合给出的结果表明,与实验相吻合。
脉冲激光沉积 (PLD) 是一种成熟的复杂化学计量薄膜沉积技术,在成功制造薄膜形式的高温超导体 (HTS) 后引起了广泛的研究关注。[1] 从那时起,PLD 主要用于在晶格匹配基板上外延生长多种复合氧化物的应用,但在光伏 (PV) 领域尚未得到探索。尽管在 21 世纪初,高导电性的 In 基 TCO 已通过 PLD 制造并成功用作 OLED 的前触点 [2,3],但关于 PLD 生长触点在 PV 设备中的应用的报道仍然很少。文献报道包括用于 CIGS [4] 和有机 [5] 太阳能电池的掺杂 ZnO 薄膜以及用于卤化物钙钛矿太阳能电池的金属氧化物传输层。 [6] 此外,PLD 已被提议用于硫族化物吸收层的制造 [7,8],最近又用于卤化物钙钛矿吸收层。[9,10]
尽管有这些重要的进步,但仍存在关键的需求,将这些新技术以外的新技术部署到与人类相关的大动物模型物种中(O'Shea等,2017)。非人类灵长类动物(NHP)是在这方面的特别重要的模型物种,具有大脑结构和功能以及复杂的认知和行为能力,与人类高度相似(Capitanio和Emborg,2008; Phillips et al。,2014; Roelfsema; Roelfsema and Treue and Treue,2014)。此外,基因组编辑的最新进展正在迅速使NHPS可行的人类疾病遗传模型(Sato和Sasaki,2018年)。因此,最新的光学技术从啮齿动物转移到行为NHP的转移有望在阐明健康和异常人类行为的临床相关神经活动中发挥关键作用。成功地应用钙成像在NHP中的开发很慢。特别是,使用常规病毒表达NHP脑中遗传编码的钙指标的困难(Sadakane等,2015a)和由较大体积NHP大脑运动引起的成像伪像(Trautmann等人,2021年; Choi等,2018,2018年)已证明最具挑战性。此外,与啮齿动物相比,NHP具有更成熟的免疫系统,需要复杂的手术策略和神经植入物硬件,并且在可用于试验和错误技术开发的动物总数上存在局限性(Phillips等人,2014年)。