1 博伊斯汤普森研究所,纽约州伊萨卡 14853,美国;2 马里兰大学植物科学与景观建筑系,马里兰州帕克分校,美国;3 扬州大学农学院,江苏省作物基因组学与分子育种重点实验室/植物功能基因组学教育部重点实验室,扬州 225009,中国;4 扬州大学江苏省粮食作物现代生产技术协同创新中心,扬州 225009,中国;5 康奈尔大学植物育种与遗传系,纽约州伊萨卡 14853;6 马里兰大学生物科学与生物技术研究所,马里兰州罗克维尔 20850。Ɨ 上述作者对本文贡献相同。
S. Haihua Chu,Daisy Lam,Michael S Packer,Jenny Olins,Alexander Liquori,Kyle Rehberger,Conrad Rinaldi,Jeffrey Marshall,Calvin Lee,Bo Yan,Bo Yan,Jeremy Decker,Jeremy Decker,Bob Gantzer,Scott Haskett,Scott Haskett,Tanggis Bohnuud,David Born,David born born barr barr,luiis,luuis,luuis。 Slaymaker,Nicole Gaudelli,Sarah Smith,Adam Hartigan和Giuseppe CiaramellaS. Haihua Chu,Daisy Lam,Michael S Packer,Jenny Olins,Alexander Liquori,Kyle Rehberger,Conrad Rinaldi,Jeffrey Marshall,Calvin Lee,Bo Yan,Bo Yan,Jeremy Decker,Jeremy Decker,Bob Gantzer,Scott Haskett,Scott Haskett,Tanggis Bohnuud,David Born,David born born barr barr,luiis,luuis,luuis。 Slaymaker,Nicole Gaudelli,Sarah Smith,Adam Hartigan和Giuseppe Ciaramella
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2021 年 1 月 5 日发布。;https://doi.org/10.1101/2020.06.19.161687 doi:bioRxiv 预印本
金帅, 1, 2, 6 费红远, 1, 2, 6 朱子旭, 1, 2, 6 罗英锋, 3, 6 刘金星, 1 高胜汉, 3 张锋, 4 陈宇航, 5 王彦鹏, 1, 2,* 和高彩霞 1, 2, 7,* 1 中国科学院遗传与发育生物学研究所、种子设计创新研究院、植物细胞与染色体工程国家重点实验室、基因组编辑中心,北京,中国 2 中国科学院大学现代农业学院,北京,中国 3 中国科学院微生物研究所、微生物资源国家重点实验室,北京,中国 4 明尼苏达大学植物与微生物生物学系、植物精准基因组学中心、微生物与植物基因组学研究所,明尼苏达州明尼阿波利斯55108,美国 5 中国科学院遗传与发育生物学研究所,种子设计创新研究院,分子发育生物学国家重点实验室,北京,中国 6 这些作者贡献相同 7 主要联系人 *通讯地址:yanpengwang@genetics.ac.cn (YW),cxgao@genetics.ac.cn (CG) https://doi.org/10.1016/j.molcel.2020.07.005
通过特异性校正治疗遗传病的概念几十年来一直是生物医学领域的焦点。理想的解决方案是提供一种精确的方法来永久修复此类突变而不会引入新的错误。早期的基因编辑尝试涉及使用锌指核酸酶、TALEN 和 CRISPR-Cas9 核酸酶在特定位点引入双链断裂,以刺激与外源供体 DNA 模板的同源重组以纠正缺陷。然而,这些技术也会以高频率引入插入/缺失。在这里,我们评估了瞬时 mRNA 治疗引入永久性单碱基编辑的潜力。碱基编辑器通过创新的改良 Cas9 系统提供了在体内纠正单点突变的潜力。胞嘧啶碱基编辑器 (CBE) 使用与胞嘧啶脱氨酶和尿嘧啶 DNA 糖基化酶抑制剂融合的 Cas9 切口酶。当引导链将胞嘧啶-鸟嘌呤碱基对导向基因组中的特定位置时,小窗口中的胞嘧啶-鸟嘌呤碱基对会高效地转化为胸腺嘧啶-腺嘌呤对,且插入/缺失最少。同样,腺嘌呤碱基编辑器 (ABE) 使用实验室进化的与 Cas9 切口酶融合的脱氧腺苷脱氨酶将腺嘌呤-胸腺嘧啶碱基对转化为胞嘧啶-鸟嘌呤对。与基于核酸酶的方法相比,使用碱基编辑器可增加靶向编辑频率,同时大大减少脱靶插入/缺失的形成。与病毒载体和质粒相比,mRNA 具有以下主要优势:1) 降低载体整合风险;2) 能够编辑难以转染的非分裂细胞,因为 mRNA 靶标是细胞质而不是细胞核;3) 可在体内重复给药,这对于病毒载体来说具有挑战性,因为衣壳存在免疫反应;4) 瞬时表达,这对于最大限度提高基因组编辑应用的特异性非常理想。在这项研究中,我们比较了 HEK293 细胞中经过序列优化、化学修饰的 CBE 和 ABE mRNA。Western blot 分析显示,与未修饰的 mRNA 相比,经过 5-甲氧基尿苷修饰、经过序列优化的 mRNA 表达更高。在培养细胞中,mRNA 的编辑频率高于质粒载体。我们展示了使用一个碱基编辑器 mRNA 同时编辑多个位点以及编辑以前无法访问的基因组位点的能力。这些结果证明了碱基编辑技术的深远潜力。最后,我们开发了一种小鼠模型,使用注射到小鼠受精卵中的 BE4max 变体 mRNA,该模型将用于在未来的研究中测试体内 ABE 校正。
硫酸钠可以在DNA中脱氨酸“转化”胞嘧啶,但不会影响5-甲基胞霉素。Bisulfite对DNA的治疗是许多基于表观遗传学的研究的DNA甲基化分析的先决条件,这些研究涉及甲基化分析和甲基化状态的定量。然而,涉及甲硫酸硫酸含DNA的分析率通常由于DNA降解,不完整的转化率和/或低单位的DNA产量而导致可变性。我们已经系统地研究了硫酸氢盐治疗DNA的程序,特别注意该过程中涉及的化学物质并转化sion速率,以限制样品之间的变异性并改善常规方法。我们发现,可以改善常规的硫酸含量DNA转化化学化学液体,以使C到U转化效率的提高,而无需在高温和非生理学pH值下孵育反应混合物的DNA降解水平。对这一过程必不可少的是禁止在某些情况下发生的5-甲基胞嘧啶“过度转化”到尿嘧啶中。我们发现,可以简化硫酸盐转化过程,并通过将热变性与甲硫酸盐转化率耦合和使用柱内的脱硫偶联来清洁和纯化转换后的DNA,并通过将热量变性耦合到最低限度。这种新方法的平均得出的输入DNA平均恢复了> 99%C到U转换。这使其适用于FFPE和LCM衍生的样品,特别适合。该方法已被专门设计用于将(除了纯化的DNA)直接作为输入材料(除纯化的DNA)生物流体,细胞或组织。