尽管DNA骨架的负电荷,但酸性残基(ASP/GLU)通常参与基础读数,对胞嘧啶的偏爱很偏爱。实际上,在已解决的DNA/蛋白质结构中,几乎完全通过ASP/GLU通过直接的氢键识别胞嘧啶,而与此同时,腺嘌呤,无论其氨基群如何,都没有显示出ASP/GLU的倾向。在这里,我们分析了ASP/GLU使用所选转录因子的经典和缩写模拟对序列特异性DNA结合的贡献,并发现它受骨链磷酸盐的排斥与有吸引力的相互作用与胞质相互作用之间的细分平衡。特别是,ASP/Glu降低了非循环位点的属性,因此充当了防止脱靶结合的负选择器。在含胞嘧啶的位点,有利的贡献不仅依赖于单个H键的形成,而且通常需要由多个细胞穿刺产生的阳性势能,而靶位点中观察到的过量的胞嘧啶在靶位点中始终如一。最后,我们表明,ASP/GLU对胞嘧啶而不是腺嘌呤的偏好是腺嘌呤咪唑环的排斥以及嘌呤 - 嘌呤二核苷酸采用BII构象的趋势。
十个时期的易位甲基二氧酶(TET Pro Teins)属于铁(II)和α-酮戊二酸依赖性二氧酶。他们(TET1,TET2和TET3)催化DNA(5-甲基胞菌素)中的连续氧合反应[1,2]。TET蛋白逐渐将5-甲基胞嘧啶转化为5-羟基甲基胞嘧啶,5-甲基环胞嘧啶,最后是5-羧基糖苷。然而,一些高影响力的研究表明,TET蛋白也可能参与RNA中5-甲基乳房的氧化[3-5]。TET蛋白在DNA脱甲基化中的作用如图1。DNA胞嘧啶改性(5-甲基胞嘧啶,5-羟基甲苯丁胺,5-甲基环胞嘧啶和5-羧基糖苷)在控制染色体功能的控制中起关键作用(例如,X-Chromome insct ins x-Chrome insctry and in Inmome insctive and x-chrome insive and in Inmome insctiv and in Inmome inscry and in Inmome inscry and insctiv and in Inmome inscry and insctiv and in Inmome。[6 - 8]。5-甲基胞霉素(5MC;称为第五碱)显着参与基因表达和转座的抑制和5-甲基胞霉素(5MC;称为第五碱)显着参与基因表达和转座的抑制和
通过特异性校正治疗遗传病的概念几十年来一直是生物医学领域的焦点。理想的解决方案是提供一种精确的方法来永久修复此类突变而不会引入新的错误。早期的基因编辑尝试涉及使用锌指核酸酶、TALEN 和 CRISPR-Cas9 核酸酶在特定位点引入双链断裂,以刺激与外源供体 DNA 模板的同源重组以纠正缺陷。然而,这些技术也会以高频率引入插入/缺失。在这里,我们评估了瞬时 mRNA 治疗引入永久性单碱基编辑的潜力。碱基编辑器通过创新的改良 Cas9 系统提供了在体内纠正单点突变的潜力。胞嘧啶碱基编辑器 (CBE) 使用与胞嘧啶脱氨酶和尿嘧啶 DNA 糖基化酶抑制剂融合的 Cas9 切口酶。当引导链将胞嘧啶-鸟嘌呤碱基对导向基因组中的特定位置时,小窗口中的胞嘧啶-鸟嘌呤碱基对会高效地转化为胸腺嘧啶-腺嘌呤对,且插入/缺失最少。同样,腺嘌呤碱基编辑器 (ABE) 使用实验室进化的与 Cas9 切口酶融合的脱氧腺苷脱氨酶将腺嘌呤-胸腺嘧啶碱基对转化为胞嘧啶-鸟嘌呤对。与基于核酸酶的方法相比,使用碱基编辑器可增加靶向编辑频率,同时大大减少脱靶插入/缺失的形成。与病毒载体和质粒相比,mRNA 具有以下主要优势:1) 降低载体整合风险;2) 能够编辑难以转染的非分裂细胞,因为 mRNA 靶标是细胞质而不是细胞核;3) 可在体内重复给药,这对于病毒载体来说具有挑战性,因为衣壳存在免疫反应;4) 瞬时表达,这对于最大限度提高基因组编辑应用的特异性非常理想。在这项研究中,我们比较了 HEK293 细胞中经过序列优化、化学修饰的 CBE 和 ABE mRNA。Western blot 分析显示,与未修饰的 mRNA 相比,经过 5-甲氧基尿苷修饰、经过序列优化的 mRNA 表达更高。在培养细胞中,mRNA 的编辑频率高于质粒载体。我们展示了使用一个碱基编辑器 mRNA 同时编辑多个位点以及编辑以前无法访问的基因组位点的能力。这些结果证明了碱基编辑技术的深远潜力。最后,我们开发了一种小鼠模型,使用注射到小鼠受精卵中的 BE4max 变体 mRNA,该模型将用于在未来的研究中测试体内 ABE 校正。
将打靶特定人源基因的 Cas9 和 sgRNA 转染到 HEK293 细胞。转染所用的质粒 DNA 上含有 表达带双端核定位序列 ( NLS )的 Cas9 及 sgRNA 的表达框,通过 TransIT-X2 (Mirus) 转染 试剂进行转染。转染所用的 Cas9 mRNA 进行了假尿苷和 5- 甲基胞嘧啶修饰且带有双端 核定位序列,使用 transIT-mRNA 转染试剂将 sgRNA 和 mRNA 共转染。 Cas9 RNPs 使用脂质 体 RNAiMAX ( Life Technologies ) 进行反向转染, RNP 的终浓度为 10 nmol 。 Cas9 蛋白上不含 核定位序列。 EnGen Cas9 含有双端核定位序列。编辑效率通过 T7E1 实验进行分析,结果 以修饰百分比进行统计。
抽象的shot弹枪元基因组测序是一种以公正的方式研究微生物组的强大方法,并且可以增加相关性,以识别新型酶促功能。然而,元基因组学与微生物组组成相关的潜力迄今未充分利用。在这里,我们介绍了宏基因组基因组 - 元组协会(METAGPA)研究框架,该框架允许将宏基因组中的遗传信息与专用功能表型联系起来。我们应用metagpa来识别与环境样品中与胞嘧啶修饰相关的酶。来自符合我们显着性标准的2365个基因,我们证实了已知的胞嘧啶修饰途径和拟议的新型胞嘧啶修饰机制。具体而言,我们表征和鉴定了一种新型的核酸修饰酶,5-羟基甲基脊髓丝氨基转移酶,该酶催化了先前未知的胞嘧啶修饰的形成,5-甲氧羟甲酰羟基甲糖苷在DNA和RNA中。我们的工作引入了Metagpa,作为一种用于推进功能性宏基因组学的新颖而多功能的工具。
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2021 年 1 月 5 日发布。;https://doi.org/10.1101/2020.06.19.161687 doi:bioRxiv 预印本
基于 CRISPR/Cas9 的碱基编辑工具可实现精确的基因组安装,并为基因治疗带来巨大希望,而 Cas9 核酸酶的大尺寸、其对特定原间隔区相邻基序 (PAM) 序列的可靠性以及靶位偏好限制了碱基编辑工具的广泛应用。在这里,我们通过将胞嘧啶脱氨酶与来自 Streptococcus_gordonii_str._Challis_substr._CH1 (ancSgo-BE4) 和 Streptococcus_thermophilus_LMG_18311 (ancSth1a-BE4) 的两个紧凑的密码子优化的 Cas9 直系同源物融合来生成两个胞嘧啶碱基编辑器 (CBE),它们比化脓性链球菌 (SpCas9) 小得多,分别识别 NNAAAG 和 NHGYRAA PAM 序列。这两种 CBE 在胞嘧啶碱基编辑中都表现出高活性、高保真度、不同的编辑窗口和低副产物,并且在哺乳动物细胞中 DNA 和 RNA 脱靶活性极小。此外,在我们测试的靶位点上,这两种编辑器都表现出与两种基于 SpCas9 工程变体(SpCas9-NG 和 SpRY)的 CBE 相当或更高的编辑效率,它们与 ancSgo-BE4 或 ancSth1a-BE4 的 PAM 序列完美匹配。此外,我们通过 ancSgo-BE4 和 ancSth1a-BE4 成功生成了两种在 Ar 基因处带有临床相关突变的小鼠模型,它们在创始小鼠中表现出雄激素不敏感综合征和/或发育致死性。因此,这两种新型 CBE 拓宽了碱基编辑工具包,分别扩大了靶向范围和窗口,以实现有效的基因修饰和应用。
将打靶特定人源基因的 Cas9 和 sgRNA 转染到 HEK293 细胞。转染所用的质粒 DNA 上含有 表达带双端核定位序列 ( NLS )的 Cas9 及 sgRNA 的表达框,通过 TransIT-X2 (Mirus) 转染 试剂进行转染。转染所用的 Cas9 mRNA 进行了假尿苷和 5- 甲基胞嘧啶修饰且带有双端 核定位序列,使用 transIT-mRNA 转染试剂将 sgRNA 和 mRNA 共转染。 Cas9 RNPs 使用脂质 体 RNAiMAX ( Life Technologies ) 进行反向转染, RNP 的终浓度为 10 nmol 。 Cas9 蛋白上不含 核定位序列。 EnGen Cas9 含有双端核定位序列。编辑效率通过 T7E1 实验进行分析,结果 以修饰百分比进行统计。