摘要:在本世纪,许多报告描述了在高温期间,嗜热剂在上层土壤层中的潜在作用。这项研究评估了这些微生物的能力,并提出了与土壤嗜热的活性相关的一些潜在后果和风险。它们活跃于有机物矿化中,释放了无机养分(C,S,N,P),否则仍将被困在土壤的有机复杂性中。要在土壤中处理复杂的有机化合物,这些嗜热剂需要细胞外酶将大型聚合物分解成简单的化合物,这些化合物可以掺入细胞中并加工。土壤嗜热剂能够使其细胞外酶活性适应环境条件。这些酶可以在高温下表现出最佳活性和降低的水含量。因此,这些微生物已被证明在土壤中(即干燥和热量)下积极处理并分解物质(包括污染物)。虽然营养循环是维持土壤服务质量的高度好处,但进行性变暖会导致土壤嗜热剂及其细胞外酶的过度活性。如果这种活动太高,则可能导致土壤有机物,营养贫困和干旱风险增加。这是一个明显的例子,说明了未来预测气候变暖的潜在影响直接由土壤微生物引起的,这对我们对生态系统功能,土壤健康和土壤干燥风险的理解产生了重大影响。
摘要:对淡水虾消化道中降解胞外酶的需氧菌进行了分离。在羧甲基纤维素琼脂平板、淀粉琼脂培养基平板、明胶蛋白胨琼脂培养基平板上分离肠道细菌。在选择性培养基上根据胞外酶对分离的菌株进行定性筛选。根据形态学、生理学和生化特征对菌株进行鉴定,鉴定出芽孢杆菌种。通过使用明胶琼脂培养基、羧甲基纤维素培养基和刚果红CMC培养基以及针对不同酶的淀粉琼脂培养基进行菌落鉴定,分离出芽孢杆菌种。分离物能够水解蛋白质和碳水化合物,表明它们在鱼类营养中的重要性。
土壤胞外酶活性(EEA)化学计量学反映了微生物对资源的代谢需求和养分有效性之间的动态平衡。然而,在贫营养环境下的干旱荒漠地区,代谢限制的变化及其驱动因素仍不清楚。在本研究中,我们调查了中国西部不同沙漠类型的样本,并测量了两种碳获取酶(β-1,4-葡萄糖苷酶和β-D-纤维二糖水解酶)、两种氮获取酶(β-1,4-N-乙酰氨基葡萄糖苷酶和L-亮氨酸氨基肽酶)和一种有机磷获取酶(碱性磷酸酶)的活性,以量化和比较土壤微生物基于其EEA化学计量学的代谢限制。所有沙漠的对数转换后的 C、N 和 P 获取酶活性比率为 1:1.1:0.9,接近假设的全球平均 EEA 化学计量比(1:1:1)。我们使用比例 EEA 通过矢量分析量化了微生物营养限制,发现微生物代谢受到土壤 C 和 N 的共同限制。对于不同类型的沙漠,微生物 N 限制按以下顺序增加:砾石沙漠 < 沙沙漠 < 泥沙漠 < 盐沙漠。总体而言,研究区域的气候对微生物限制变化的解释比例最大(17.9 %),其次是土壤非生物因素(6.6 %)和生物因素(5.1 %)。我们的研究结果证实,EEA 化学计量学方法可用于多种沙漠类型的微生物资源生态学研究,并且即使在沙漠等极度贫营养环境中,土壤微生物也能通过调节酶的产生来增加对稀缺营养物质的吸收,从而维持群落水平的营养元素稳态。
将不可生物降解的废弃石油塑料转化为可回收单体的一种可能方法是通过微生物和酶促活动降解塑料。塑料还可以通过这些过程矿化,产生二氧化碳、水和新生物质作为副产品。正如先前的研究 [ 11 - 13 ] 所证明的那样,这种转化可以产生重要的生物产品。微生物在整个生物降解过程中分泌细胞外酶来分解塑料。一旦附着在塑料上,这些酶就会触发水解并在塑料表面产生较短的聚合物中间体。微生物利用这些中间体作为碳源,最终导致二氧化碳的产生。尽管塑料具有合成性质,但近年来已发现许多能够代谢它们的微生物 [ 14 ]。
土壤微生物可以在土壤外酶的帮助下在垃圾分解过程中获得能量和养分。垃圾类型是影响土壤外酶活性的最关键因素。然而,垃圾类型如何通过草地等级调节土壤外酶活性。在这里,我们在不同降解的草原上进行了两种不同类型的垃圾分解的240天实验,并进行了土壤外酶的活性和化学计量。我们发现,在氯藻中,C/N的酶活性和C/N的C/N酶计量比在轻度降级的水平和C-Acquiring酶活性的C. virgata中高于L. C. virgata的酶高于L. Chinenensis中的16.96%。p-apquiring酶活性具有相同的趋势,垃圾类型适中和高度降解的水平,在维氏梭菌中的含量分别为20.71%和30.89%。仅在轻度降解水平的C/N的酶化学计量中显示了酶化学计量法的变化,这表明垃圾类型仅影响轻度降解的草地中的微生物C限制。几乎所有土壤外细胞外酶活性和细胞外酶化学计量法(除N/P的酶化学计量法外,随着草原降解水平的增加而降低。所有矢量角度均小于45°,表明土壤微生物在分解过程中受到n而不是p的限制。酶矢量分析表明,在垃圾分解过程中,C和N共同限制了土壤微生物群落。此外,根据随机森林(解释超过80%),我们发现土壤总氮,总碳,总磷,溶解的有机C,pH和EC是影响土壤酶活性的重要因素,这是通过降解水平来影响土壤酶活性的。我们的结果强调,降解水平可以调节垃圾类型对土壤的影响
摘要:磺基杆菌属的细菌是与原材料生物处理有关的嗜酸性微生物群落的主要成员。对不同磺杆菌物种的基因组分析揭示了来自链球菌和热硫杆菌链球菌中α-葡聚糖的淀粉/糖原依赖性生物合成途径。该途径的关键酶是一种融合的麦芽糖 - 三藻/α-淀粉酶蛋白,未编码在其他磺基杆菌细菌的基因组中。同时,所有编码酶分解酶的基因的存在允许在这两个物种中预测多糖降解途径。尽管新陈代谢具有最佳的多种嗜营养性类型,但磺基杆菌对多糖的逐渐适应了它们的活性有机嗜生长。此外,酶测定确定参与糖原和淀粉降解的细胞外酶的活性。在天然和工业栖息地的嗜酸性群落中,多糖在粘液基质基质的细胞外聚合物物质组成中的重要功能是促进微生物细胞附着在固体表面上,例如矿物颗粒。多糖也可以是在特定环境条件下用于能量和碳代谢的储存化合物。在本研究中提供的硫杆菌细菌在食用和合成α-葡聚糖中的代谢能力对于理解嗜酸性微生物群落及其在实践中的应用至关重要。
植物寄生线虫 (PPN) 对全球作物产量构成重大威胁,估计每年造成农业损失 1570 亿美元。虽然合成化学杀线虫剂可以有效控制 PPN,但过度使用会对人类健康和环境造成不利影响。生物防治剂 (BCA),例如根际细菌和真菌,是安全且有前景的 PPN 控制替代方案。这些 BCA 与植物根系相互作用,产生胞外酶、次生代谢产物、毒素和挥发性有机化合物 (VOC) 来抑制线虫。植物根系分泌物在吸引有益微生物进入受侵染的根系方面也发挥着至关重要的作用。植物与根际微生物之间对抗 PPN 的复杂相互作用大多尚未开发,这为通过多组学技术发现新型杀线虫剂开辟了新途径。先进的组学方法,包括宏基因组学、转录组学、蛋白质组学和代谢组学,已促成杀线虫化合物的发现。本综述总结了细菌和真菌生物防治策略的现状及其对线虫病(PPN)的控制机制。此外,还探讨了基于组学的方法对于探索新型杀线虫剂的重要性,以及PPN生物防治的未来发展方向。本综述强调了多组学技术在PPN生物防治中的潜在重要性,以确保可持续农业。
缩写:AAV:腺相关病毒;ABCA1:ATP 结合盒转运蛋白 A1;ACE2:血管紧张素转换酶 2;ANXA1:膜联蛋白 A1;Bcl-2:B 细胞白血病/淋巴瘤 2;Bcl-xL:超大 B 细胞淋巴瘤;BDNF:脑源性神经营养因子;Brn3b:脑特异性同源框/POU 结构域蛋白 3b;C3:C3 胞外酶转移酶;CNV:脉络膜新生血管;CS:皮质类固醇;EAU:实验性自身免疫性葡萄膜炎;ECM:细胞外基质;EIU:内毒素诱导的葡萄膜炎;HLA:人类白细胞抗原;hSyn:人类突触蛋白 1 启动子;IL-1 β:白细胞介素 1 β;IOP:眼压; IRBP:光感受器间类视黄酸结合蛋白;MAC:膜攻击复合物;MAX:MYC 相关蛋白 X;MCP-1:单核细胞趋化蛋白-1;MMP:基质金属蛋白酶;Nabs:中和抗体;NF- κ B:核因子 κ B;NHP:非人类灵长类动物;NIU:非传染性葡萄膜炎;Nrf2:核因子红细胞2相关因子2;Pgk:磷酸甘油激酶;RGC:视网膜神经节细胞;RPE:视网膜色素上皮;scAAV:自互补 AAV;sCD59:可溶性 CD59;SOD2:超氧化物歧化酶 2;Tg-MYOC Y437H:具有肌动蛋白 Y437H 突变的转基因小鼠;TLR:Toll 样受体;TM:小梁网; TrkB:原肌球蛋白相关受体激酶-B;VEGF:血管内皮生长因子
木质素是一种复杂的化学异质聚合物,可形成木质纤维素生物和化学水解的物理屏障,使木质纤维素生物质难以降解。木质素分解微生物通过产生细胞外酶在木质素降解中起着至关重要的作用。木质素过氧化物酶和锰过氧化物酶是在木质素降解中发挥作用的酶。已从土壤、厨余垃圾、落叶和牛粪中分离出 41 种细菌分离株。然而,这些分离株的木质素分解活性尚未被发现。本研究旨在根据木质素过氧化物酶和锰过氧化物酶活性确定从土壤、落叶、厨余垃圾和牛粪中分离出的细菌的木质素分解能力。研究分几个阶段进行:分离株再培养,基于亚甲蓝染料降解的木质素过氧化物酶活性定性和定量测试,以及基于酚红染料降解的锰过氧化物酶活性定性和定量测试。共有 4 株来自土壤的细菌分离物(Tn9、Tn14、Tn16 和 Tn17)和 2 株来自牛粪的细菌分离物(KS2 和 KS5)表现出定性和定量的木质素过氧化物酶活性。4 株来自土壤的分离物(Tn2、Tn6、Tn14 和 Tn16)、1 株来自厨余的分离物(SD1)和 1 株来自牛粪的分离物(KS5)也表现出锰过氧化物酶活性,定性和定量均如此。表现出木质素过氧化物酶和锰过氧化物酶活性的 9 株细菌分离物具有作为木质素降解生物制剂的潜力。关键词:细菌、木质素分解、过氧化物酶
背景:基因操作在微生物中有着广泛的应用。通过基因操作和基因编辑,可以构建多功能菌株,同时生产包括酶在内的多种工业生物材料。目的:根据纤维素酶在包括食品工业在内的各个行业中的重要性,本研究旨在通过基因操作在土著蜡状芽孢杆菌EG296菌株中生产纤维素酶。材料与方法:采用SOEing PCR扩增位于蜡状芽孢杆菌蛋白酶基因(aprE)调控上游和下游区域之间的枯草芽孢杆菌168纤维素酶基因,并通过自然转化转化为蜡状芽孢杆菌EG296。在筛选出具有纤维素酶活性的菌株后,通过同源重组从转化子的基因组中删除scoC基因(aprE基因的负转录调控因子),以同时提高纤维素酶和蛋白酶活性。结果:蜡状芽孢杆菌基因组中引入纤维素酶基因,纤维素酶活力约为0.61 u.mL -1 。通过scoC基因缺失,蛋白酶活力由230 u.mL -1 提高到363.14 u.mL -1 ,同时,在蛋白酶启动子调控下的纤维素酶活力也由0.61 u.mL -1 提高到0.78 u.mL -1 。蜡状芽孢杆菌表达的纤维素酶和蛋白酶的不稳定性指数分别为26.16和20.18,远低于40的阈值,因此两种酶均比较稳定。结论:获得了1株能够生产和分泌两种重要工业胞外酶(纤维素酶和蛋白酶)的基因工程菌株,且后续纯化工艺简单。