人工智能 (AI) 在过去几年中取得了前所未有的进步,引发了有关人工智能安全性的争论。人们担心人工智能发展过快,没有考虑到所有安全问题,这导致人们呼吁放缓人工智能研究,因为它对每个人的生活的影响越来越大。例如,人工智能领导人呼吁暂停高级人工智能开发 6 个月[1]。同样,《国际高级人工智能安全科学报告》也提出了一些安全问题,甚至对军事用途等没有生死攸关的决定那么重要的问题也是如此[2]。我们认为,人工智能界在很大程度上忽视了自主武器系统 (AWS),这是人工智能的一个令人担忧的用例,对人类生命构成了令人震惊的威胁。最近的研究 [3] 是人工智能领域为数不多的明确解决 AWS 风险的研究论文之一,提出了减轻这些风险的建议及其对人工智能研究和全球稳定的影响。我们以这类工作为基础,质疑军事人工智能是否可以在国际人道主义法 (IHL) 的背景下得到安全监管。
摘要 目的 基于超声心动图和血流动力学数据,提出了一种基于人工智能的新型表型分析方法,用于在经导管主动脉瓣置换术 (TAVR) 前对重度主动脉瓣狭窄 (AS) 患者进行分层。本研究旨在根据这种新型分层系统分析 TAVR 后主动脉瓣外心脏损伤的恢复情况。方法 先前建立了所提出的表型分析方法,该方法采用来自双中心登记处的 366 名重度 AS 患者的数据。在这项连续研究中,247 名患者 (67.5%) 获得了 TAVR 后第 147±75.1 天的超声心动图随访数据。结果 通过 TAVR 矫正重度 AS 显著降低了同时患有重度二尖瓣反流的患者比例(从 9.29% 降至 3.64%,p 值:0.0015)。此外,肺动脉压力得到改善(估计收缩期肺动脉压力:从 47.2±15.8 到 43.3±15.1 mm Hg,p 值:0.0079)。然而,右心功能障碍以及严重三尖瓣反流患者的比例保持不变。持续性右心功能障碍的群集最终显示 2 年生存率分别为 69.2%(95% CI 56.6% 至 84.7%)和 74.6%(95% CI 65.9% 至 84.4%),与几乎没有或没有持续性心肺功能障碍的群集(88.3%(95% CI 83.3% 至 93.5%)和 85.5%(95% CI 77.1% 至 94.8%))相比显着降低。结论 这种表型分析方法可在术前识别出重度 AS 患者,这些患者在 TAVR 后无法从主动脉瓣外心脏损伤中恢复,因此其生存率显著降低。重要的是,决定预后的不是初次就诊时的肺动脉高压程度,而是右心功能障碍的不可逆性。
摘要:本研究确定了开发能够在物理世界中生存的自给自足的人工智能 (AI) 系统的技术障碍。首先,我们假设了两种生存场景,其中人工智能的目标是长期生存。首先,设想了两种生存场景:由人类设计的以长期生存为目标的人工智能和旨在独立生存的人工智能。接下来,我们确定了六个领域中关键的技术挑战类别。然后,我们列出了这些类别中的 21 个具体挑战,并使用 ChatGPT 估计了它们的技术难度。结果表明,与硬件相关的挑战可能需要 100 多年的时间才能让自主的人工智能生存下来,但人类的帮助可以显著减少所需的时间;ChatGPT 常识中的这一评估具有启发性,但所引用知识的范围仅限于 2021 年 9 月。包括所引用知识的范围仅限于 2021 年 9 月这一事实,应将其视为临时的。
参考文献 (1) Sanchez-Leon, S., 等人 (2018)。利用 CRISPR/Cas9 改造的低筋非转基因小麦。Plant Bio J 16, 902-910。(2) Camerlengo, F., 等人 (2020)。利用 CRISPR-Cas9 多重编辑 α-淀粉酶/胰蛋白酶抑制剂基因以减少硬粒小麦中的过敏原蛋白。Front in Sust Food Syst 4, 104。(3) Dodo, HW., 等人 (2008)。利用基因工程缓解花生过敏:沉默免疫显性过敏原 Ara h 2 可显着减少其含量并降低花生的致敏性。Plant Bio J 6, 135-145。(4) Dodo, HW. (2021)。 SBIR 第二阶段:利用基因组编辑技术开发无过敏原花生。SBIR-STTR。(5) Sugano, S., 等人 (2020)。利用定点诱变技术同时诱导大豆中两种过敏原基因的突变等位基因。BMC plant biol 20, 1-15。(6) You, J., 等人 (2022)。CRISPR/Cas9 介导的芝麻 (Sesamum indicum L.) 高效靶向诱变。植物科学前沿 13。(7) Chang, Y., 等人 (2022)。强大的 CRISPR/Cas9 介导的 JrWOX11 基因编辑可操纵胡桃坚果树种的不定根和营养生长。Scientia Hort 303, 111199。
本作品受美国版权法保护(公法 94-553,第 107 节)。根据版权法中定义的合理使用,允许简短引用本材料,但需注明出处。未经作者明确书面许可,不得将本材料用于经济利益。
CRISPR-Cas 系统可通过非同源末端连接 (NHEJ) 基因破坏突变等位基因来治疗常染色体显性遗传病。然而,目前的 CRISPR-Cas 系统无法将许多单核苷酸突变与野生型等位基因区分开来。在这里,我们对六种 Cas12j 核酸酶进行了功能性筛选,并确定 Cas12j-8 是一种具有超紧凑尺寸的理想基因组编辑器。Cas12j-8 表现出与 AsCas12a 和 Un1Cas12f1 相当的活性。Cas12j-8 是一种高度特异性的核酸酶,对原间隔区相邻基序 (PAM) - 近端区域中的单核苷酸错配敏感。我们通过实验证明 Cas12j-8 能够对具有单核苷酸多态性 (SNP) 的基因进行等位基因特异性破坏。Cas12j-8 识别简单的 TTN PAM,可提供高靶位点密度。计算机模拟分析显示,Cas12j-8 能够对 ClinVar 数据库中的 25,931 个临床相关变异和 dbSNP 数据库中的 485,130,147 个 SNP 进行等位基因特异性破坏。因此,Cas12j-8 特别适合用于治疗应用。
摘要:我们的研究评估了到 2050 年实现从化石燃料到可再生能源的完全过渡的八种途径的有效性。这些途径包括可再生能源开发;提高能源效率;增加能源节约;碳税;更公平地平衡人类福祉和人均能源使用;限额与交易制度;碳捕获、利用和储存;以及核能发展。我们使用年度“英国石油公司 2021 年世界能源统计评估”报告作为主要数据库。在全球范围内,化石燃料、可再生能源(主要是水电、风能和太阳能)和核能占 2020 年总能源消耗的 83%、12.6% 和 6.3%。为了到 2050 年实现零化石燃料使用,我们发现,如果能源需求保持不变或比 2020 年能源需求水平增加 50%,可再生能源产量将需要增加 6 倍或 8 倍。将 2050 年世界能源需求增长限制在 2020 年水平的 25% 以内,将提高实现摆脱对化石燃料依赖的可能性。能源效率的提高需要加速,超过目前每年约 1.5% 的速度。积极实施涉及土地使用和税收的节能政策,到 2050 年,世界能源使用量有可能减少 10% 或更多。我们的荟萃分析显示,让 80 亿人过上“体面生活水平”的最低人均能源消费水平平均为每年约 70 GJ,相当于 2020 年全球平均水平的 93%。温带气候下发达国家对汽车依赖性较高,人均每年需要约 120 GJ,而赤道附近国家对汽车依赖性较低,人均每年需要 30 GJ。我们的荟萃分析表明,到 2050 年用可再生能源取代化石燃料是可能的,但需要积极应用所有八种途径,发达国家彻底改变生活方式,并要求所有国家密切合作。
在上述改进领域,ATCC采取了一步,通过CRISPR/CAS 9基因编辑创建了高敏机病毒生产细胞系。通过消除干扰素响应途径并通过删除/下调促凋亡基因来提高VPC的生存,从而提高病毒颗粒产量的设计策略,我们采用了两种方法。第一个是利用这样一个事实,即细胞依靠干扰素引起的途径作为对病毒感染的防御。干扰素信号传导的主要效应因子是通过STAT1蛋白。磷酸化和STAT1的产生自二聚体诱导该细胞内信号传导蛋白转移到细胞核上,从而导致许多细胞通过细胞产生许多抗病毒,抗增殖性和免疫调节反应。因此,从此
在世界谷物产量统计中,燕麦排在第六位,仅次于小麦、玉米、大米、大麦和高粱。在世界许多地方,燕麦不仅用作谷物,还用作饲料和草料,用作铺垫物、干草、半干草、青贮饲料和谷壳。燕麦作物的主要用途仍然是用作牲畜谷物饲料,平均占世界总使用量的 74% 左右。在印度,燕麦育种始于 20 世纪 80 年代,是印度西北部、中部和东部地区最重要的谷物饲料作物。作为饲料作物,燕麦具有优良的蛋白质质量、脂肪和矿物质含量。它是一种美味、多汁且营养丰富的作物。许多疾病会造成严重的直接损害,主要是饲料产量的降低。其中包括冠锈病、茎锈病和叶斑病等疾病。在超过 31 个野燕麦品种中,已从燕麦基因库中发现了多种抗冠锈病、秆锈病、白粉病、BYDY 等主要病害的抗性基因。人们正在广泛利用标记辅助选择 (MAS)、标记辅助回交 (MABC)、标记辅助基因聚合和标记辅助轮回选择 (MARS) 等多种育种策略将抗性基因渗入优良品种。随着新测序技术的进步和生物信息学的飞速发展,完整的燕麦基因组测序已不再遥不可及。燕麦基因组测序将为育种者开发大量基于序列的标记(如 SNP)铺平道路,这些标记将有助于通过利用连锁不平衡作图和基因组选择来识别抗病基因。
回归因子预处理的信号中分别提取了常用的 fNIRS 特征 , 并比较了它们的质量 。 结果表明 , 基于 GLM 的方法能够对大脑活动提供更好的单次实验评估 ,