E10 是 10% 乙醇和 90% 汽油的混合物,可合法用于任何汽油驱动的车辆。美国销售的大多数汽油含有高达 10% 的乙醇,以提高辛烷值、满足空气质量要求或满足联邦可再生燃料标准。自 2011 年起,EPA 开始允许在 2001 年款及更新的汽油车辆中使用 E15。乙醇所含的能量比汽油少约三分之一。因此,与使用 100% 汽油相比,车辆使用 E10 时每加仑行驶的里程通常会减少 3%-4%,使用 E15 时每加仑行驶的里程通常会减少 4%-5%。虽然 E10 随处可见,但目前美国有 1,300 多个加油站提供 E15。
佛蒙特州通过其综合能源计划(VT CEP,于2022年更新)建立了标记,以帮助指导佛蒙特州社区实现可持续的未来。该计划的核心目标是到2050年(90 x 50)达到90%的可再生能源。为了实现这一目标,开发新的可再生能源是不够的。由于可再生能源的每单位能量比其基于化石燃料的同行产生的能源少,因此总体能源消耗的急剧减少对于实现这一目标至关重要。特别是Shaftsbury,必须从2015年的水平削减到2050年的总能源消耗,以满足90 x 50的目标。节能工作以及通过技术升级和建筑气候化提高的能源效率将使佛蒙特州的城镇能够根据州能源目标减少能源消耗。
我们对由许多相同的量子单元组成的量子电池在噪声下的能量回收效率进行了理论分析。虽然利用量子效应加速电池充电过程的可能性已被广泛研究,但为了将这些想法转化为工作设备,评估量子电池元件在接触环境噪声时存储相的稳定性至关重要。在这项工作中,我们将这个问题形式化,引入了一系列操作上定义良好的性能系数(工作电容和最大渐近工作/能量比),这些性能系数衡量了从由大量相同和独立元素(量子单元或 q 单元)组成的量子电池模型中回收有用能量所能达到的最高效率。对于能量存储系统经历相位失调和去极化噪声的情况,给出了这些量的明确评估。
这些准则旨在缩小几个UBC建筑物上观察到的性能差距。在过去的10年中,UBC观察到,建筑物的平均能量比拟议的LEED Energy模型多60%。这一差距的一部分是由于调试过程中的不足造成的 - UBC正在积极试用新建筑物的新调试策略 - 部分是由于能源模型的准确性所致。UBC了解,校准的能量模型是一种非常专业的模型,用于具有与合规模型不同方法的能量预测。理解这一点,这些准则提供了主要的假设,可用于提高合规能量模型的准确性。
海浪有多种类型。海啸波是由地震或山体滑坡引起的非常长、非常快的波,毛细波是水面上的小涟漪,由风产生,主要受表面张力效应的影响。在波浪能应用中,感兴趣的波浪是风生重力表面波,即由风吹向海面而产生的波浪,主要受重力和惯性力的影响。因此,风生海浪是一种可再生能源,它由照射到地球上的太阳能分两步提炼而成,首先产生风,然后产生波浪。因此,海浪每单位体积所含的能量比风能和太阳能都要多,波浪能资源与风能的特性大致相似,在高纬度地区最大,如图 1.24 所示。
E10 是 10% 乙醇和 90% 汽油的混合物,可合法用于任何汽油驱动的车辆。美国销售的大多数汽油含有高达 10% 的乙醇,以提高辛烷值、满足空气质量要求或满足联邦可再生燃料标准。自 2011 年起,EPA 开始允许在 2001 年款及更新的汽油车辆中使用 E15。乙醇所含的能量比汽油少约三分之一。因此,与使用 100% 汽油相比,车辆使用 E10 时每加仑行驶的英里数通常会少 3%-4%,使用 E15 时每加仑行驶的英里数通常会少 4%-5%。虽然 E10 随处可见,但目前美国约有 2,000 个加油站提供 E15。
E10 是 10% 乙醇和 90% 汽油的混合物,可合法用于任何汽油驱动的车辆。美国销售的大多数汽油含有高达 10% 的乙醇,以提高辛烷值、满足空气质量要求或满足联邦可再生燃料标准。自 2011 年起,EPA 开始允许在 2001 年款及更新的汽油车辆中使用 E15。乙醇所含的能量比汽油少约三分之一。因此,与使用 100% 汽油相比,车辆使用 E10 时每加仑行驶的里程通常会减少 3%-4%,使用 E15 时每加仑行驶的里程通常会减少 4%-5%。虽然 E10 随处可见,但目前美国有 1,300 多个加油站提供 E15。
当使用欧洲平均电力结构为电池充电时,这两种情景相对于基线的表现相似。轻量化仍然是生产阶段和整个生命周期性能的重要方法。转向更环保的电力结构、高比例的水电对钢铁非常有利;在这种情况下,金属生产变得比使用阶段更重要,因为钢铁生产所需的能量比铝少得多。使用水电组合可能会将使用阶段的贡献降低到 8%;AHSS 车辆的总体影响相对于基线为负,而对铝为正。电池生产影响的份额大于 AHSS 金属生产,而对于铝而言,金属生产比电池更重要。进一步改善电池生产影响对 AHSS 车辆没有显著影响,对于铝车辆而言,总排放量相对于基线车辆有所增加。
ONR 正在研究与大规模储能相关的船上集成和安全,包括兆瓦 (MW) 和高达兆瓦小时 (MWh) 规模的电池或飞轮,接口高达 1000V。这些系统将嵌入平台并在整个主机平台的生命周期内运行。陆地和商业海上应用中备受瞩目的储能系统事故为可能遇到的潜在故障类型、严重程度和场景提供了一些见解。然而,这些应用中没有一个像激进的操作概念(高速率放电和充电、具有挑战性的热条件)和高功率应用(高功率与能量比)那样深入嵌入。本特别通知旨在通过协同使用与大规模锂离子电池和飞轮储能系统相关的建模、原型设计和实验来更好地了解故障、风险评估和缓解方法