1 Athinoula A. Martinos生物医学成像中心,马萨诸塞州综合医院,美国查尔斯敦; 2美国波士顿哈佛医学院放射学系; 3澳大利亚布里斯班昆士兰州大学高级成像中心; 4德国玛格德堡的奥托 - 冯 - 格里克大学实验物理学研究所生物医学磁共振共振系; 5高野外MR Center,生物医学成像和图像指导疗法系,奥地利维也纳医科大学; 6肌肉骨骼成像中的Karl Landsteiner临床分子MR研究所,奥地利维也纳; 7奥地利格拉兹医科大学神经病学系; 8德国Magdeburg的德国神经退行性疾病中心; 9德国玛格德堡行为脑科学中心; 10莱布尼兹神经生物学研究所,德国玛格德堡; 11美国剑桥技术学院卫生科学与技术部
摘要:肿瘤脉管系统异常会产生一种微环境,不适合抗肿瘤免疫反应,从而引起对免疫疗法的抗性。通过抗血管生成方法(称为血管归一化)对功能障碍肿瘤血管进行重塑,使肿瘤微环境重塑了免疫利益的微环境,并提高了免疫疗法的有效性。肿瘤脉管系统是潜在的药理靶标,具有促进抗肿瘤免疫反应的能力。在这篇综述中,总结了参与肿瘤血管微环境调节的免疫反应的分子机制。此外,突出了临床前和临床研究的证据,以促靶向血管生成信号传导和具有治疗潜力的免疫检查点分子的联合靶向。还讨论了调节组织特异性免疫反应的肿瘤中内皮细胞的异质性。假定肿瘤内皮细胞与免疫细胞之间的串扰假定具有独特的分子特征,可以被视为开发新的免疫治疗方法的潜在目标。
肠道菌群越来越被认为是肠粘膜中血管发育和内皮细胞功能的致动变量,但也影响远程器官的微脉管系统。在小肠中,用肠道菌群定殖以及随后的先天免疫途径的激活促进了复杂的毛细血管网络和乳乳的发展,从而影响了肠道的完整性 - 血管屏障的完整性以及营养摄取。由于肝脏通过门户循环产生大部分的血液供应,因此肝微循环稳步遇到微生物元素衍生的模式和主动信号代谢物,这些代谢产物会诱导肝弦正弦内皮的组织变化,从而影响正弦的免疫分化并影响代谢过程。,此外,微生物群衍生的信号可能会影响远处器官系统(例如大脑和眼睛微血管)的脉管系统。近年来,这个肠道居民的微生物生态系统被揭示出有助于几种血管疾病表型的发展。
摘要肿瘤脉管系统在肿瘤生长和转移中起重要作用。肿瘤血管生成为生长的肿瘤细胞提供更多的氧和营养,不像胚胎血管生成那样严格调节,并且不遵循任何层次有序的模式。脉管系统的异质性,高间隙液压,由于血流缓慢而导致的渗出差,而交换容器之间的较大距离可能是将治疗剂递送到肿瘤的潜在障碍。通过使用针对受体蛋白的单克隆抗体来预防血管生成,肿瘤脉管系统的归一化以及增强血液灌注,这些抗体在促肌血管病性肿瘤细胞上过表达的受体蛋白,并改善了对肿瘤的治疗剂的靶向递送,所有这些都可以使用适当尺寸的纳耐加属尺寸来实现。纳米药物,例如聚合物纳米颗粒,脂质纳米颗粒,胶束,介孔二氧化硅颗粒,金属纳米颗粒,噪声组和脂质体,用于递送抗癌药物与抗血管生成剂结合使用。在其中,脂质体递送系统大多得到FDA批准的临床用途。在这篇综述中,讨论了肿瘤血管生成的分子途径,肿瘤脉管系统的生理学,靶向肿瘤靶向治疗剂的障碍以及克服这些障碍的不同策略。
对导管容器和微脉管系统的血管结构和量化的抽象分析对于理解中枢神经系统(CNS)内的生理和病理过程至关重要。大多数可用的体内成像方法缺乏穿透深度和/或分辨率。某些离体方法可以提供更好的分辨率,但主要是破坏性的,因为它们是在从颅骨或椎骨上取出后用于对中枢神经系统组织进行成像的。去除程序不可避免地会改变所研究结构的原位关系,并损害硬脑膜和瘦素。μangiofil允许具有出色分辨率的定性新颖的后微型计算机断层扫描(MicroangioCT)方法,因此可以可视化最小的脑毛细血管。获得的数据集赋予了包括微脉管系统在内的血管树的相当简单的定量分析。μangiofil具有出色的填充能力,并且是骨组织高的放射性能力,即使在完整的头骨或椎骨内,它也可以对脑微脉管系统进行成像。这允许原位可视化,从而研究了硬脑膜和瘦脑层以及其原始几何形状中的血液供应。此外,此处介绍的方法允许使用相关方法,即微轴,然后是经典的组织学,免疫组织化学甚至电子显微镜。此处介绍的实验方法利用了常见的桌面微型扫描仪,它使其成为临床前和基础研究中中枢神经系统(中枢神经系统微)脉管系统评估(微)脉管系统的有希望的日常工具。
摘要。通过跳动的心向反向散射的场的空间和时间演变,同时用连贯的光照亮了其宏观和微血管化。要执行这些血管化图像,我们基于对空间去极化的斑点场的选择性检测,主要通过多个散射生成的空间去极化斑点场的选择性检测。我们通过空间或时间估计来考虑斑点对比度的计算。我们表明,通过后处理方法,可以明显增加观察到的血管结构的信噪比,这意味着计算运动场,该方法允许选择从不同心跳时期提取的相似帧。此后来的优化揭示了血管微观结构,其空间分辨率为100μm。©作者。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jbo.28.4.046007]
摘要三阴性乳腺癌(TNBC)是乳腺癌最具侵略性的亚型,这是大多数与乳腺癌相关的死亡。由于缺乏特定的治疗靶标,化学治疗剂(例如,紫杉醇)仍然是全身治疗的主体,但丰富了具有肿瘤发射能力和称为癌症干细胞(CSC)的肿瘤发射能力和类似干燥特征的细胞的亚群;因此,开发一种新的有效策略进行TNBC治疗是一种未满足的医疗需求。癌症纳米医学已改变了癌症药物发展的景观,从而允许使用高治疗指数。在这项研究中,我们通过在聚合物 - 脂质杂交纳米颗粒(NPS)中共同包裹临床批准的药物(例如紫杉醇,verteporfin和combretastatin(CA4)),开发了一种新的疗法。vertepor-fine是一种用于治疗黄斑变性的药物,最近被发现抑制了河马/YAP(与是相关的蛋白质)途径,该途径已知可以促进乳腺癌的进展和CSC的发展。CA4是一种血管破坏剂,已在临床试验的II/III期中进行了测试。我们发现,我们的新三种NP不仅有效地抑制了TNBC细胞的活力和细胞迁移,而且还显着减少了紫杉醇诱导的TNBC细胞中CSC富集和/或CA4诱导的CSC富集,部分通过抑制上调的HIPPO/YAP信号来部分。vertepor -fifin和Ca4的组合在抑制体内斑马模型中的血管生成方面也比单独的单独药物更有效。通过使用临床相关的患者衍生异种移植(PDX)模型,进一步评估了三重药物-NP的效率和应用潜力。三重药物-NP有效地抑制了PDX器官幻灯片培养物的生存能力,并阻止了体内PDX肿瘤的生长。这项研究开发了一种能够同时抑制大量癌细胞,CSC和血管生成的方法。
调节心脏壁以及其他器官中血流或血管抗性和电容的调节是基于几种机制。其中,最重要的是自动调节,代谢恢复和机制取决于内皮衍生的因素,激素和神经[1,2]。它们之间的平衡取决于这些血管提供的器官,并与器官生理有很强的联系。存在血管性纤维化的存在可能会限制调节机制正常工作的能力,从而代表了氧气和养分供应和代谢产物的限制。周围血管纤维化,其特征是血管周围的结缔组织增加,尤其是胶原蛋白,已在脑,肾脏,心脏,肝脏,肺,肺,皮肤和骨骼肌和骨骼肌肉中被延伸[3-7]。由于氧气提取在心脏中的静止状态已经很高,因此在恒定灌注压力下氧气递送的质量取决于通过扩张前动脉和小动脉扩张增加冠状动脉流的能力。因此,微循环的故障或纤维化重塑是对心脏健康的主要威胁。宏观重塑心脏意味着心脏的形状和大小的变化,而在微观水平上,重塑均涉及
主管博士慕尼黑大学的AliErtürk中风和痴呆研究研究所(ISD)诊所第一审查员:博士AliErtürk第二评论家:博士教授医学MarcoDüring国防日期:2020年11月25日
脉管系统是成人脑神经干细胞(NSC)壁ni的关键组成部分。在成年哺乳动物海马中,NSC与致密毛细管网络密切接触。如何维持这种利基市场尚不清楚。我们最近发现,成年海马NSC表达VEGF,这是一种可溶性因子,具有趋化性的血管内皮。在这里,我们表明全球和NSC特定的VEGF损失导致NSC及其中间祖细胞与局部脉管系统的解离。令人惊讶的是,我们发现局部血管密度没有变化。相反,我们发现NSC衍生的VEGF支持NSC中基因表达程序的维持及其与细胞迁移和粘附相关的后代。体外测定表明,VEGF受体2的阻断受损NSC的运动性和粘附性。我们的发现表明,NSC通过自刺激的VEGF信号传导保持与脉管系统的接近性,该信号支持其运动能力和/或对局部血管的粘附。