在生理相关的水凝胶中的工程脉管网络是由于细胞– Bioink相互作用以及随后的水凝胶设备接口而成的。在这里,提出了一种新的细胞友好制造策略,以实现支持集成在微流体芯片中的共培养的灌注多凝胶脉管模型。该系统包含两个不同的水凝胶,以特定支持为血管模型选择的两种不同细胞类型的生长和增殖。首先,通过微流体设备内的两光聚合聚合(2pp),通道以明胶的墨水印刷。然后,注入人类肺纤维细胞纤维纤维水凝胶以包围印刷网络。最后,人体内皮细胞被播种在印刷通道内。打印参数和纤维纤维组合物进行了优化,以减少水凝胶肿胀,并确保可以用细胞介质灌注的稳定模型。以两个步骤制造水凝胶结构可确保没有细胞暴露于细胞毒性制造过程,同时仍获得高纤维打印。在这项工作中,在定制制造的灌注系统上成功证明了通过3D印刷的SCA旧和共培养模型的灌注来指导内皮细胞入侵的可能性。
体外血脑屏障(BBB)的组织工程正在迅速扩展,以应对模仿BBB的天然结构和功能的挑战。这些模型中的大多数利用2D常规微流体技术。然而,3D微血管模型提供了更紧密地概括体内微脉管系统的细胞结构和多细胞排列,并且还可以重新创建血管床的分支和网络拓扑。从这个角度来看,我们讨论了当前的3D脑微血管建模技术,包括模板,打印和自组装毛细管网络。此外,我们解决了生物矩阵和流体动力学的使用。最后,将确定关键挑战以及未来的方向,这些方向将改善下一代大脑微脉管模型的发展。
小鼠移植肿瘤的血管网络通常比自发性肿瘤更脆弱。自发性肿瘤是由遗传突变或暴露于致癌物中的,并且在几个月内生长缓慢,更像人类肿瘤。在移植和自发性肿瘤之间通过静脉内给予的BAC代理对肿瘤定植的比较表明,后者含有较少的细菌[12]。有趣的是,通过施用脉管系统中断剂(VDA),combretastatin a4磷酸盐(CA4P),自发性肿瘤的定殖显着改善。VDA促进细菌从脉管系统中逸出到肿瘤中,并导致肿瘤组织的坏死,从而扩大细菌可以繁殖的小裂(图1)。在横纹肌肉瘤中进行了类似的观察结果
抽象自体脂肪光栅是一种纠正软组织缺乏的广泛认可的方法。尽管脂肪移植表现出极好的生物相容性和简单的适用性,但脂肪坏死引起的相对较低的保留率仍然是一个挑战。脉管移植后脉管系统是不可或缺的,具有多种关键功能。移植物中的快速有效的血管生成对于供应脂肪细胞的生存所需的氧气至关重要。它促进了炎性细胞的流入,以去除坏死的脂肪细胞和有助于再生细胞的脂肪组织再生脂肪移植物中的再生。脉管系统还为脂肪祖细胞和血管祖细胞之间相互作用提供了一个利基市场,从而增强了移植物中的血管生成和脂肪形成。已经采用了各种方法,例如使用多种促血管生成细胞或利用无细胞的方法来富集移植物来增强血管生成。米色和移植物中的脂肪细胞可能会增加血管密度。本综述旨在概述血管在脂肪移植中的功能,并讨论可以在脂肪接枝后增强血管生成的不同细胞或无细胞的方法。
脑类器官是从多能干细胞中得出的,可以向我们展示来自干细胞的自发器官发生中发生的情况,以及通过良好定义的提示在诱导过程中发生的情况。因此,他们提供了一种理解大脑发育的另一种方法。此外,使用诱导的多能干细胞(IPSC)来推导人脑ORGA-NOIDS为建模脑部疾病提供了独特的机会。IPSC衍生的脑类器官可用于研究遗传变异和某些脑表型之间的因果关系,以模拟异质性病因的疾病,甚至开发治疗方法[1,2]。虽然我们远非建模大脑的完整发展过程,但已经在建模该过程方面采取了令人印象深刻的步骤。许多挑战限制了脑器官的效用,其中缺乏血管。当缺乏脉管系统的类器官生长时,缺氧以及缺乏营养和去除代谢物时,在器官的内部越来越严重,导致细胞应激和死亡。与此相一致,脉管造成的脑器官中的细胞表达与胁迫相关基因的标记,表明细胞应激水平增加。因此,缺乏脉管系统会导致细胞缺陷,并限制了脑器官的大小。缺乏脉管系统还消除了血管的内皮细胞信号传导,这是适当发育的大脑所需的。血管细胞形成神经祖细胞发育的利基市场;它们的缺失会影响祖细胞的发育。此外,有效的氧气和营养素和去除代谢物可能会改善脑器官的区域化,这在当前技术中大多是缺少的。血管性人脑器官的一种方法是将它们移植到免疫缺陷啮齿动物的大脑中(图1A)。这导致了移植的脑器官的血管化和改善的成熟[3,4]。然而,将脑器官移植到啮齿动物大脑中很难扩大。此外,人血管细胞中的基因表达与啮齿动物细胞并不完全相同,这可能会导致脑器官发育的差异。
PhotoAcoustics(PA)是一种快速新兴的成像方式,这要归功于其固有的功能和代谢能力,灵敏度,深度渗透,非侵入性和无辐射的光学组织特性测量。血红蛋白是光线的活跃吸收器,因此是理想的发色团,可以在形态,网络复杂性和功能代谢(即血液氧化)方面对脉管系统进行定量的脉管分析。使用传统的线性超声探针(LUP)进行检测或需要临时检测器时,当前对PA成像的局限性包括缠绕伪影的图像。对PA成像的另一个挑战是,肤色的变化(因此黑色素含量)可以以成像装置设计为预期的方式改变受试者之间的测量。如果被忽略,这将产生不准确的功能信息,例如基于不同肤色的血液氧合水平。
摘要:肥胖的发展与脂肪组织(AT)结构的大量调节有关。AT的可塑性在整个成人寿命中的显着扩展或减小大小的能力反映出,这与其脉管系统的发展有关。脉管系统的这种增加可能是通过脂肪组织衍生的干细胞(ASC)分化为内皮细胞(EC)并形成新的微脉管系统来介导的。我们已经表明,microRNA(miRNA)-145调节ASC分化为EC样细胞(ECL)细胞。在这里,我们调查了ASCS分化为ECS是否受miRNA签名的控制,该miRNA签名取决于肥胖库所产生的脂肪仓库位置和 /或代谢条件。人类ASC是通过瘦肉和肥胖患者的手术手术从白色获得的,被诱使分化为ECL细胞。我们已经确定,皮下ASC和内脏ASC和miRNA-424-5p和MiRNA-424-5p和miRNA-378A-3P中的miRNA-29b-3p在皮下(S)ASC中均参与分化为EC样细胞。这些miRNA通过靶向FGFR1,NRP2,MAPK1和TGF-β2和MAPK信号通路来调节其对ASC的促血管生成作用。我们首次表明miRNA-29b-3p上调通过直接靶向SASC和内脏ASC的TGFB2来促进ASC的分化为ECL细胞。此外,我们的结果表明,与SASC的起源(肥胖/精益)无关,miRNA-378A-3P的上调以及MiRNA-424-5p的下调分别抑制MAPK1和过表达FGFR1和NRP2。总而言之,脂肪仓库的位置和肥胖都通过特定miRNA的表达影响了居民ASC的分化。
MAEDA和同事在固体鼠类中首先发现EPR效应[1,2]。聚合物 - 毒物偶联物为静脉施用了10至100倍的浓度[2-4]。被动靶向的癌症药物在大约30年前首次到达诊所,并批准了一种基于EPR的药物,即一种高乙二醇化的脂质体药物Doxil。纳米载体优先通过被动靶向在实体瘤中渗漏和淋巴引流,因此优先通过被动靶向积聚。混乱的脉管系统和肿瘤微疗法(TME)和保留率的渗透性可导致TME中大分子的积累70倍。由于对恶性肿瘤的支撑至关重要的血管形成而产生的漏水和缺陷的脉管系统,再加上不完善的淋巴引流,允许EPR效应。肿瘤脉管系统的直径,形状和密度不规则,与不连续的血管不规则。这导致了几种条件,包括肿瘤中的杂种灌注,从流体,缺氧和酸性环境的外部灌注压力升高[5]。基于EPR的药物输送取决于各种因素,包括循环时间,靶向以及克服障碍的能力,这些因素取决于药物颗粒的大小,形状和表面特性。被动靶向主要基于扩散机制。结果,大小是EPR依赖性输送过程中的关键因素。形状和形态在被动靶向中也起着重要作用。研究表明,大约40至400 nm的纳米颗粒尺寸范围适合确保长期循环时间,并增加了肾脏清除率降低的肿瘤的积累[6]。通常,刚性的刚性,尺寸为50至200 nm的球形颗粒具有长期循环的最高趋势,以避免肝脏吸收
组织特异性的内皮细胞在具有恒定的互惠串扰与驻留细胞的天然组织中具有至关重要的作用。三维(3D)生理模拟在体外模型中融合了肺特异性微脉管系统,以模拟与肺部相关的疾病,涉及调节内皮细胞行为(如癌症)。在这项研究中,我们研究了二维(2D)和肺基质衍生的3D水凝胶的生长动力学,形态变化和对肺微脉管生物线索的反应。HUVEC和HULEC-5A细胞在2D上进行培养,并比较其生长,形态和对不同生长培养基制剂的反应。Brightfield和免疫荧光成像进行评估形态的差异。对于3D培养物,天然牛肺被脱细胞,冻干,溶解并重构为水凝胶形式,其中内皮细胞被嵌入。细胞生长和器官分支。HUVEC和HULEC-5A细胞在2D上表现出可比的生长和形态。然而,在3D肺衍生的ECM水凝胶中,组织特异性的HULEC-5A细胞表现出更好的适应其微环境,其特征是增强的器官型分支和更长的分支。HULEC-5A的生长在2D和3D条件下对肺癌细胞调节培养基的反应性。在3D中,ECM配体的浓度显着影响了分子拥挤具有抑制作用的长期培养的细胞生长。我们的数据表明,HULEC-5A细胞为经常追求具有可比生长和形态的HUVEC提供了可靠的替代方法。由于其与驻留细胞的细胞串扰固有程序,组织特异性内皮的使用构成了建模生理和病理过程的重要方面。此外,我们的研究是3D体外模型中肺特异性微脉管系统与肺特异性ECM之间的协同作用的首次证明。
旋转计划®笔记本电脑工作站是用于程序计划的移动独立解决方案。它旨在简化工作流量并提供最佳的气道通路信息,以靶向外围肺结节。SpinPlanning®软件使用CT扫描为目标创建动态3D路线图。它允许医生可以选择细分气道,结节和脉管系统,请参见相关的结节统计,自定义其观点等等。