图1:Nafion N117(A,C)的电导率(A,B)和电解质质量分数(C,D)和烟雾E-620(B,D)在NaOH或KOH电解质中浸泡在Select浓度(MOH IN MOH代表Na或K)处的膜。在表S2和S3中将相应的数据表列出。
从介电常数和绝缘破坏电场强度的观点出发选择Al 2 O 3 、HfO 2 、SiO 2 。使用这些绝缘膜制作MOS结构样品,并评估绝缘膜的介电击穿场强和介电常数。为了进行评估,我们使用了新推出的浸入式手动探测器。在该评价中,HfO 2 膜表现出最高的介电常数和击穿电场强度。通过简单的器件模拟,发现如果该膜具有这种水平的特性,则它可以用作氧化镓MOSFET的栅极绝缘膜。因此,在本研究中,我们决定使用该HfO 2 薄膜进行MOSFET的开发。由于不仅需要从初始特性而且还需要从长期可靠性的角度来选择绝缘膜,因此我们还考虑了具有第二好的特性的Al 2 O 3 膜作为候选材料I。取得了进展。 2020财年,我们改进了栅极绝缘膜的材料选择和成膜条件。具体地,对于作为栅极绝缘膜的候选的Al 2 O 3 ,为了减少作为沟道电阻增大的因素的栅极绝缘膜/氧化镓界面处的电荷,将Al 2 O 3 /镓我们考虑在成膜后通过热处理去除氧化物界面。图3示出了(a)评价中使用的MOS结构的截面图和(b)界面态密度分布。确认了通过在N 2 气氛中在450℃下热处理10分钟,可以形成界面能级为1×10 12 eV -1 cm -2 以下的良好界面。可知当温度进一步上升至550℃、650℃、800℃时,产生10 12 eV -1 cm -2 量级的界面态并劣化。通过本研究,我们获得了构建晶体管基本工艺过程中的热处理温度的基本数据。
摘要T细胞反应先于抗体,并可以早期控制感染。我们分析了SARS-COV-2感染后这种快速反应的克隆基础。我们使用T细胞受体(TCR)测序立即定义了个体T细胞克隆的轨迹。在SARS-COV-2 PCR+个体中,TCR的一波强烈但瞬时扩展,经常与第一个阳性PCR测试同一周达到峰值。这些扩展的TCR CDR3被富集,以便在功能上注释为SARS-COV-2特定的序列。在SARS-COV-2菌株之间高度保守的,而不是通过循环的人冠状病毒,表位是高度保守的。 许多扩展的CDR3在大流行前曲目中以高频存在。 早期反应TCRS特定的淋巴细胞脉络膜脑膜炎病毒病毒表位还以高频在幼稚的曲目中发现。 高频天真的前体可能使T细胞反应在急性病毒感染的关键早期阶段迅速反应。表位是高度保守的。许多扩展的CDR3在大流行前曲目中以高频存在。早期反应TCRS特定的淋巴细胞脉络膜脑膜炎病毒病毒表位还以高频在幼稚的曲目中发现。高频天真的前体可能使T细胞反应在急性病毒感染的关键早期阶段迅速反应。
催乳素(PRL)受体(PRLR)基因在各个大脑区域表达,最高水平存在于脉络丛中,这是受体介导的PRL从血液到脑脊液流动的转运的位点。我们研究了PRL在鼠脉络丛中PRL基因表达的调节机制。我们首先研究了鼠Prlr基因中替代的第一个外显子的组织。除了三个已知的第一个外显子ME1 1,ME1 2和ME1 3,两个第一个外显子ME1 4和ME1 5还被cDNA克隆新近识别。PRLR mRNA的每个第一个外显子变体都表现出组织或通用表达。在小鼠的脉络丛中,与二肌小鼠中的小鼠相比,泌乳小鼠中ME1 3-,ME1 4-和ME1 5 -PRLR mRNA的表达水平增加。此外,与PRL差异(PRL c / c和prl c / k)小鼠相比,PRL(PRL K / K)小鼠的ME1 4-PRLR mRNA的表达水平降低。在卵巢切除的PRL K / K小鼠中,PRL给药的ME1 4 -PRLR mRNA的表达水平显着增加,但通过17 B-雌二醇给药。PRLR mRNA的最后两个外显子变体的表达水平,编码PRLR的长和短细胞质区域,在泌乳小鼠中也升高,并在PRL K / K小鼠中降低。这些发现表明,PRL通过ME1 4前外显子的转录激活刺激PRLR基因的表达,从而导致鼠脉络膜丛中PRLR mRNA的长形和短形式变体的增加。
胆固醇液晶(CLC)相。[1] CLC相的最引人注目的特征是由于光的选择性反射,其异常的光旋转功率和结构颜色。[2]结构颜色是光干扰现象的结果,例如由周期性纳米结构引起的Bragg反射和棒状分子的平均折射率。CLC的初始缺口位置可以通过公式λ0= n×p 0表示,其中λ0是初始缺口位置,n是平均折射率,P 0是初始音高长度。[3]自然采用了这种螺旋纳米结构,向花瓣,蝴蝶翅和甲虫的表皮提供各种颜色信息。[4]灵感来自此类天然光子纳米结构,许多研究人员使用光子晶体,等离子体纳米结构和元素制造人造结构颜色。[5]这些天然螺旋纳米结构的实例和人造结构颜色的研究已用于设计具有先进功能的材料,例如在光学传感,伪装和反伪造技术中使用的材料。[6]
带有2D材料的膜表面涂层已显示出用于水处理应用的防婚特性。但是,目前基于真空过滤的合成方法不容易缩放。本研究描述了一种可扩展的方法,可用于涂层膜,包括氧化石墨烯(GO),六边形硝酸氢硼(HBN),二硫化钼(MOS 2)和二硫化钨(WS 2)。使用含氧剂将含有每类2D薄片的异丙基醇溶液喷涂到商业聚偏氟化物(PVDF)上。纳米材料用聚多巴胺(PDA)作为一个可以轻松地集成到可扩展的滚动过程中的方法中的交联。使用扫描电子显微镜,原子力显微镜,接触角,拉伸强度测量和傅立叶转换红外光谱法评估了形态,表面粗糙度,疏水性,机械耐用性和化学组成的变化。在72 h的膜蒸馏(MD)实验中测试了2D纳米材料涂层的膜,并将其与原始的PVDF和PDA/PVDF膜进行了比较。使用高浓度的腐殖酸(150 ppm)和石蜡油(200 ppm)的盐排斥和MD性能稳定性评估,从而模拟了从油气萃取中模拟简单的有机废水。通量下降比以每小时渗透率损失百分比(%/h)来衡量,以便将来与不同的实验时间进行比较。所有膜的盐分排斥很高(> 99.9%)。原始的PVDF膜在10小时后因结垢而导致孔隙润湿失败,而PDA/PVDF膜的通量下降率最大(0.3%/小时)。涂有GO和HBN的膜的通量下降比较低(分别为0.0021±0.005和0.028±0.01%/h)。Go涂层的膜是唯一能够治疗含有表面活性剂和含有污垢的饲料的膜类型。改进的性能归因于表面粗糙度和疏水性的降低,这降低了污垢表面上的污垢吸附。这项工作显示了一种可延展的可扩展方法来克服MD中的犯规限制。
阴离子交换膜燃料电池 (AEMFC) 是质子交换膜燃料电池 (PEMFC) 的一种经济高效的替代品。高性能耐用的 AEMFC 的开发需要高导电性和坚固的阴离子交换膜 (AEM)。然而,AEM 通常在导电性和尺寸稳定性之间表现出权衡。本文报道了一种氟化策略,用于在聚(芳基哌啶)AEM 中创建相分离的形态结构。高度疏水的全氟烷基侧链增强了相分离,从而构建了用于阴离子传输的互连亲水通道。因此,这些氟化 PAP (FPAP) AEM 同时具有高电导率(80°C 时 > 150 mS cm − 1)和高尺寸稳定性(80°C 时溶胀率 < 20%)、优异的机械性能(拉伸强度 > 80 MPa 和断裂伸长率 > 40%)和化学稳定性(80°C 时在 3 m KOH 中 > 2000 小时)。使用本 FPAP AEM 的具有非贵重 Co-Mn 尖晶石阴极的 AEMFC 实现了 1.31 W cm − 2 的出色峰值功率密度。在 0.2 A cm − 2 的恒定电流密度下,AEM 在燃料电池运行 500 小时后保持稳定。
该项目致力于研究虚拟现实 (VR) 中模拟的室内/室外环境,以及它如何影响与相应现实条件相似的近视发展。VR 如何影响视觉感知,这种影响对近视者和正视者有何不同?最初为成年人设计的 VR 护目镜如何影响儿童的视力?该项目通过对儿童和青少年群体进行 VR 实验来调查这些研究问题。受试者将被要求在 VR 模拟的室内和室外环境中执行任务,同时在任务之前、期间和之后进行各种测量。测量包括但不限于轴长、脉络膜厚度、调节和会聚相关参数、眼球运动、记忆任务、视觉疲劳等。
摘要:卵巢黑色素瘤是成年眼中最常见的恶性肿瘤,主要是在脉络膜中,但也是虹膜和纤毛体。近一半的患者发现了遥远的转移。癌症干细胞是一种具有自我更新和多向分化能力的细胞,与肿瘤侵袭和转移有关。尽管在其他肿瘤中,癌症干细胞的概念相对成熟,但其存在和葡萄膜黑色素瘤中的验证方法仍然不确定。在癌症干细胞的存在下更深入的及其机制可能揭示了治疗紫veal黑色素瘤的新策略。本文回顾了癌症干细胞的概念及其在尿中黑色素瘤中的研究进展,包括鉴定,可能的标记,癌症干细胞靶向药物治疗以及该领域的争议和前景。关键词:紫美黑色素瘤,癌症干细胞,标记,药物治疗