抽象背景/旨在应用深度学习技术来开发人工智能(AI)系统,该系统可以根据光学相干断层扫描(OCT)黄斑图像来识别高近视患者的威胁性疾病。在这项横截面前瞻性研究中,从2012年至2017年开始,从1048名高山眼科中心(ZOC)获得的1048名近视患者获得了5505个合格的OCT黄斑图像,以开发AI系统。独立测试数据集包括从2019年1月至2019年5月在ZOC招募的91名近视患者获得的412张图像。我们采用了InceptionResnETV2体系结构来训练四个独立的卷积神经网络(CNN)模型,以识别高近视的以下四种威胁性的危及危险状况:视网膜菌,黄斑孔,视网膜脱离和病理肌反应型脉络膜脉络膜化。焦点损失用于解决类不平衡,并根据Youden指数确定最佳的操作阈值。在独立的测试数据集中结果,在所有条件下,接收器操作特征曲线下的区域均高(0.961至0.999)。我们的AI系统的敏感性等于甚至比视网膜专家的敏感性以及高特异性(大于90%)。此外,我们的AI系统为热图提供了透明且可解释的诊断。结论我们使用OCT黄斑图像来开发CNN模型来识别高近视患者的视力威胁性疾病。我们的模型具有可靠的敏感性和高特异性,可与视网膜专家相当,并且可以用于大规模的近视筛查和患者随访。
描述/背景眼睛的结构在两个子标题下分类:(1)前部和(2)后段。前部段由眼睛的前部组成,包括瞳孔,角膜,虹膜,睫状体,幽默和镜头。后段由眼睛的背面组成,包括玻璃体幽默,视网膜,脉络膜,黄斑和视神经。后段眼疾病(例如,与年龄相关的黄斑变性,黄斑水肿,糖尿病神经病,葡萄膜炎,开眼性青光眼)是视觉障碍的最普遍的原因。眼药监督的最常见途径是玻璃体内注射。其他用于药物输送的途径包括局部,全身,离子遗迹,近去和其他注射路线。扩展释放玻璃体内植入物是相对较新的输送模式。局部应用仍然是由于易于管理而成为最优选的送货路线。局部应用可用于治疗影响眼前部分的疾病。尽管局部和系统性途径很方便,但缺乏生物利用度和无法将治疗水平提供给视网膜的药物水平,这促使视力科学家探索了替代性给药途径。上椎骨空间是巩膜和脉络膜之间的潜在空间,是一种将治疗剂传递到眼后的方法。潜在的注射螺旋体注射的潜在优势是能够最大程度地减少全身性不良反应,同时向局部组织提供较高的药物水平。该提出的福利假设高药物局部水平会导致预后改善。权衡与这种潜在的好处是局部组织损害微峰的风险。微通道系统将药物输送通道与用于套管尖端定位的光纤光源相结合。该技术正在研究用于治疗与视网膜疾病相关的螺想下新生血管化。
肌腱病和肌腱破裂:包括fastive在内的氟喹诺酮与所有年龄段的肌腱炎和肌腱破裂的风险增加有关。这种不良反应最常涉及跟腱,而跟腱破裂可能需要手术修复。肌腱炎和肌腱破裂(肩部),手,二头肌,拇指和其他肌腱部位也已被报道。在服用皮质类固醇药物的患者以及肾脏,心脏或肺移植术的患者中,通常60岁以上的老年患者患有氟喹诺酮相关肌腱炎和肌腱破裂的风险进一步增加。除了年龄和皮质类固醇使用外,还可能独立增加肌腱破裂的风险包括剧烈的身体活动,肾衰竭以及先前的肌腱疾病,例如类风湿关节炎。肌腱炎和肌腱破裂也发生在服用没有上述危险因素的氟喹诺酮类药物中。肌腱破裂可能在治疗完成期间或之后发生;据报道,在完成治疗后长达几个月发生的病例已有报道。的情况。应建议患者以肌腱炎或肌腱破裂的第一个迹象休息,并联系其医疗保健提供者,以改用非喹诺酮抗菌药物。
隔膜膜是大脑中重要的薄膜结构,可将侧心室前角分开,对于维持脑解剖学和功能至关重要。在这里,我们描述了一个38岁的男性,有20年的癫痫发作,每年发生约三到四次,每集持续30分钟至一小时,他们在三天前又有了最近的癫痫发作。大脑的磁共振成像(MRI)显示出其后部缺乏隔膜颗粒状,两个侧心心室的轻度突出和肉质的异常疗程,导致诊断为隔离膜的部分缺乏。该病例强调了全面神经影像在检测结构性脑异常中的重要性,这对于有效的诊断,管理和改善患者结果至关重要,尤其是在长期存在的癫痫发作障碍中。
Tie Jun Cui 1 , Shuang Zhang 2 , Andrea Alù 3 , Martin Wegener 4 , Sir John Pendry 5 , Jie Luo 6 , Yun Lai 7 , Zuojia Wang 8 , Xiao Lin 8 , Hongsheng Chen 8 , Ping Chen 7 , Rui-Xin Wu 7 , Yuhang Yin 9 , Pengfei Zhao 9 , Huanyang Chen 9 , Yue Li 10 , Ziheng Zhou 10 , Nadar Engheta 11 , Viktar Asadchy 12 , Constantin Simovski 13 , Sergei Tretyakov 13 , Biao Yang 14 , Sawyer D. Campbell 15 , Yang Hao 16 , Douglas H. Werner 15 , Shulin Sun 17 , Lei Zhou 17 , Su Xu 18 , Hong-Bo Sun 10 , Zhou Zhou 19 , Zile Li 19 , Guoxing Zheng 19 , Xianzhong Chen 20 , Tao Li 7 , Shining Zhu 7 , Junxiao Zhou 21 , Junxiang Zhao 21 , Zhaowei Liu 21 , Yuchao Zhang 22 , Qiming Zhang 22 , Min Gu 22 , Shumin Xiao 23 , Yongmin Liu 24 , Xianzhe Zhang 24 , Yutao Tang 25 , Guixin Li 25 , Thomas Zentgraf 26 , Kirill Koshelev 27, Yuri Kivshar 28 , Xin Li 29 , Trevon Badloe 30 , Lingling Huang 29 , Junsuk Rho 30 , Shuming Wang 7 , Din Ping Tsai 31 , A. Yu.Bykov 32 , A.V.Krasavin 32 , A.V.Zayats 32 , Cormac McDonnell 33 , Tal Ellenbogen 33 , Xiangang Luo 34 , Mingbo Pu 34 , Francisco J. Garcia-Vidal 35 , Liangliang Liu 36 , Zhuo Li 36 , Wenxuan Tang 1 , Hui Feng Ma 1 , Jingjing Zhang 1 , Yu Luo 37 , Xuanru Zhang 1 , Hao Chi Zhang 1 , Pei Hang He 1 , Le Peng Zhang 1 , Xiang Wan 1 , Haotian Wu 1 , Shuo Liu 1 , Wei Xiang Jiang 1 , Xin Ge Zhang 1 , Cheng-Wei Qiu 38 , Qian Ma 1 , Che Liu 1 , Long Li 39 , Jiaqi Han 39 , Lianlin Li 40 , Michele Cotrufo 3 , C. Caloz 41 , Z.-L. Deck-Léger 41 , A. Bahrami 41 , O. Céspedes 41 , E. Galiffi 3,5 , P. A. Huidobro 42 , Qiang Cheng 1 , Jun Yan Dai 1 , Jun Cheng Ke 1 , Lei Zhang 1 , Vincenzo Galdi 43 , Marco Di Renzo 44 1 - Southeast University, Nanjing 210096, China 2 - The University of Hong Kong, China 3 - City University of New York, United States of America 4 - Karlsruhe Institute of Technology, Germany 5 - Imperial College London, United Kingdom 6 - Soochow University, China 7 - Nanjing University, China 8 - Zhejiang University, China
根据混合规则) /()(2 1 2 2 1 1 H H y H y H y H y H y h Y y,其中i y H是厚度,< /div> < /div>
近年来,材料科学实验室的自动化和机器人技术已经变得越来越易于使用,并且该领域的研究人员受到实验创新和加速材料发现的希望所激发的。研究人员正在努力实施实验过程的自动化,也是实验室中的自主权。(实验室自治是指实验过程和分析以及解释,决策和计划的自动化和整合。)为了达到这一点,实验室自动化和自主权的实施是一个研究项目,在时间和金钱方面具有重要的前期费用。但是,我们现在进入一个阶段,将这些新功能应用于实验实验室中,其中主要研究目标超出了优化,以实现对新兴应用的知识或材料发现。因此,出现了不同的用例和需求,这可能与设计自动驾驶实验室时看到的模式不同。1 - 3
图 1. (A) 结合巨胞饮诱导肽(细胞摄取的生理刺激物)和膜溶解肽(破坏细胞质易位障碍的物理化学方法)用于细胞质生物活性货物的递送。(B) SDF-1α 衍生肽的序列。(C) 用 5 µM 肽和 1 mg/mL Dex70-FL 在 α-MEM(-) 中处理 30 分钟后诱导 HeLa 细胞对 Dex70-FL 的摄取。比较 SN21 与 (D) SDF-1α 和 (E) R8 或 TAT 诱导的 Dex70-FL 摄取。数据呈现为三个生物学重复的平均值 ± 标准误差 (SE)。单因素方差分析,然后进行 (C) Dunnett 事后检验和 (D, E) Tukey 事后检验。**,P<0.01; ***,P<0.001;ns,不显著
图 1. 制造过程示意图。(a)PMP 制备过程和样品照片,白色箭头指向 PMP。(b)固定在 3D 打印支撑框架上的 Metal-FPI 上的聚对二甲苯沉积。插图显示了聚对二甲苯封装的普遍特征。(c)PMP 的 SEM 横截面以及相关的 EDS 映射。