摘要:本文结合数值分析和实验验证,研究了基于氮化硅 (Si3N4) 平台的脊形波导的波长相关灵敏度。在第一部分中,详细分析了 Si3N4 脊形波导的模式特性,重点分析了有效折射率 (neff)、衰减场比 (EFR) 和传播损耗 (αprop)。这些参数对于理解引导光与周围介质的相互作用以及优化用于传感应用的波导设计至关重要。在第二部分中,通过实验证明了基于 Si3N4 波导的赛道环谐振器 (RTRR) 的波长相关灵敏度。结果表明,随着波长从 1520 nm 移至 1600 nm,RTRR 的灵敏度明显提高,从 116.3 nm/RIU 上升到 143.3 nm/RIU。这一趋势为设备在较长波长下的增强性能提供了宝贵的见解,强调了其在需要在该光谱范围内高灵敏度的应用方面的潜力。
光帆动力学和多普勒阻尼 指导老师:Boris Kuhlmey 联合指导老师:Martijn de Sterke 电子邮件联系方式:boris.kuhlmey@sydney.edu.au 大挑战:基本定律和宇宙;“突破摄星”大挑战基金 半人马座阿尔法星系统是距离太阳最近的恒星系统。由于它距离我们超过 4 光年,使用现有技术需要花费数千年才能到达那里。“突破摄星”是一个令人兴奋且雄心勃勃的项目,旨在缩短这个漫长的时间框架。计划使用 100 GW 地球激光将表面积为 10 平方米、质量为 1 克(包括有效载荷)的帆加速到光速的 20%。以这个速度,大约需要 25 年才能到达半人马座阿尔法星系统并将信号发回地球。要使这一目标成为现实,必须克服许多实际和概念上的挑战。其中之一就是帆的稳定性。激光束从来都不是完美的,因此激光加速帆不可避免地会导致侧向运动和扭矩,从而导致帆偏离。必须通过自我校正的帆设计来克服这一问题,从而实现向目标的稳定运动。我们最近对二维运动进行了理论分析,并建立了原理证明,现在正在将其完全三维化。我们有许多理论和数值项目,需要理论力学、狭义相对论、光学和电磁学的方法,旨在确定帆表面的详细光学特性、其运动以及帆结构的概念设计。
大挑战项目 光帆动力学和多普勒阻尼 指导老师:Boris Kuhlmey 联合指导老师:Martijn de Sterke 电子邮件联系方式:boris.kuhlmey@sydney.edu.au 半人马座阿尔法星系统是距离太阳最近的恒星系统。由于它距离我们超过 4 光年,使用现有技术需要花费数千年才能到达那里。突破摄星计划是一个令人兴奋且雄心勃勃的项目,旨在缩短这个漫长的时间框架。该计划是使用 100 GW 地球激光将表面积为 10 平方米、质量为 1 克(包括有效载荷)的帆加速到光速的 20%。以这个速度,大约需要 25 年才能到达半人马座阿尔法星系统并将信号发回地球。要使这个目标成为现实,必须克服许多实际和概念上的挑战。其中一个挑战就是帆的稳定性。激光束从来都不是完美的,因此激光加速帆不可避免地会导致侧向运动和扭矩,从而导致帆偏离。必须通过自我校正的帆设计来克服这一问题,从而实现向目标的稳定运动。我们最近对二维运动进行了理论分析,并建立了原理证明,现在正在将其完全三维化。我们有许多理论和数值项目可用,这些项目需要理论力学、狭义相对论、光学和电磁学的方法,旨在确定帆表面的详细光学特性、其运动以及帆结构的概念设计。这些项目由物理基金会的特别大挑战基金资助。
将航天器发送到我们自己的太阳系中的行星和其他物体的任务几乎已经成为常规。突破性的星际计划旨在将我们的视野扩展到我们自己的太阳系以外的地平线,远离我们最接近的邻居Alpha Centauri System,距离地球有4.2光年[1]。这个巨大的距离意味着即使是迄今为止最快的人造飞机,Parker太阳能探针(预测的最接近太阳方法的最接近光速的最高速度为0.064%),将需要6500年才能到达Al-Pha Centauri。通过化学燃料加速加速的航天器需要在Or-der中携带大量的燃料,以达到接近光速的任何明显部分的速度。一个天然能源来源的自然候选者是光,这是几十年前提出的[3,4]。这是突破性星际计划采取的方法的基本原理。的目的是通过将基于地球的激光阶段阵列加速到光速的20%,将其带有有效载荷的超轻帆艇送到Alpha Centauri [5]。这将使帆可以到达Proxima Centauri并在大约26年内将信号发送回地球;一切都在人类的一生中。帆有望具有约一克的质量,有效载荷包含探测器和电子设备,将信号发送回具有相似质量的地球[6]。在这个宏伟愿景的各个方面都有许多科学和加强挑战,包括激光阵列设计[7],材料选择[6,8],帆在加速下[9],热管理[6,10,11]和通信[12]。差异表明,将帆加速至最终速度的“合理”方案如下[5]:帆的总面积约为10 m 2,净收入激光强度约为10 gw m-2。帆被加速至光速的20%,距离
拥有液态水地下海洋的冰卫星是太阳系中最有前途的天体生物学目标之一。在这项工作中,我们评估了在前体生命探测任务中部署激光帆技术的可行性。我们研究了前往土卫二和木卫二的此类激光帆任务,因为这两颗卫星发射出的羽流似乎可以进行现场采样。我们的研究表明,千兆瓦激光技术可以将 100 公斤的探测器加速到 ∼30 公里/秒的速度,然后在 1 - 4 年的时间内到达木卫二,在 3 - 6 年的飞行时间内到达土卫二。虽然激光阵列的理想纬度各不相同,但将必要的基础设施放置在靠近南极圈或北极圈的地方可能是土卫二任务在技术上可行的选择。至关重要的是,我们确定与这些卫星的最小相遇速度(约 6 km s −1 )可能接近最佳速度,可通过类似于欧罗巴快船任务上的表面灰尘分析仪的质谱仪来检测羽流中的生物分子构件(例如氨基酸)。总之,太阳系中的冰卫星可能非常适合通过激光帆结构方法进行探索,尤其是在需要低相遇速度和/或多次任务的情况下。
摘要 数千年来,人类一直梦想着探索地球和太阳系以外的空间。本文讨论了如何利用当今或不远的将来的技术实现这种星际旅行,特别关注推进技术。首先,本文考虑了星际旅行背后的动机,即它将提供有关系外行星和星际介质的大量科学信息。然后,本文讨论了使用传统航天器进行星际旅行时面临的许多挑战,包括距离、时间和能量方面的挑战。然而,许多可能的替代推进技术解决了这些问题。本文讨论的三种技术是离子发动机、核脉冲推进和光帆。本文使用全面的 Pugh 矩阵分析了每种技术的适用性。本文得出结论,光帆是星际任务的最佳选择,因为它们具有高比冲和最终速度。利用光帆技术开发了在 50 年内飞越我们最近的恒星比邻星的基础任务概念。任务概念包括讨论推动光帆所需的激光器、探测器的大小和质量、机载仪器、任务时间表、通信、部署,最后是风险分析。本文最后介绍了创建此类任务所需的未来进步和研究。
[4] Shyamnath 等人(2017 年)。LoRa 反向散射:实现无处不在的连接愿景。ACM 交互式、移动、可穿戴和无处不在技术论文集。
63287椎板切除术,用于活检/切除肿瘤63290层状切除术,用于活检/切除肿瘤63300切除术内病变。前/前外侧方法63301切除脊髓内病变。前/前外侧方法63302切除脊髓内病变。前/前外侧方法63303切除脊髓内病变。前/前外侧方法 div>
奥帆已确认其在中国工厂的 Forane ® 1233zd 生产线已成功启动。奥帆将为阿科玛提供 1233zd,并增加阿科玛的产品供应。今年早些时候,阿科玛宣布在北美市场推出 Forane ® 1233zd 的商业化产品,这是该公司持续致力于让可持续材料更广泛应用的一部分。“阿科玛与奥帆的合作已经进行了三年多。此时此刻,Forane ® 1233zd 的生产对于支持行业增长至关重要,”氟化学品全球集团总裁 Christophe Villain 表示。“这一战略合作伙伴关系,加上我们自己的工厂将于 2023 年底或 2024 年初上线,将使我们能够为家庭保温、冷链和家电制造提供更多可持续材料。”对未来的长期投资
(1)章节图中的海洋脊的海洋壳A现在是图表c中发现的最年轻的正常磁性岩石。(2)章节图中的海角A的海角A现在是图表c中发现的最古老的正常磁性岩石。(3)示意图中最接近海洋中部脊的反向磁性极性岩石比最接近章节图中的中端脊的反向磁极性岩石年轻。(4)构图图B中的反向磁性岩石与框图b中的正常磁极岩相同的年龄b。