目的:本研究旨在评估脑卒中患侧上肢功能增强对下肢步态的影响。方法:将40例符合条件的脑卒中患者随机分为对照组和治疗组,每组20例。两组患者在治疗前均接受基于人工智能和计算机视觉的动态评估。评估主要分析步态周期中肩肘关节的活动范围,以及患侧的各种步态参数(如步长、步速、站立相百分比等)。评估后,对照组接受常规康复治疗。结果:结果显示,治疗前两组患者无明显差异。但治疗后,治疗组患者患侧肩肘关节活动度有明显改善(p<0.05),而对照组患者仅有轻微改善,但无统计学意义(p>0.05)。结论:患侧上肢功能的改善似乎也对步态恢复有积极的影响。但值得注意的是,观察期相对较短。需要进一步研究来确认这种影响是否能长期持续。
本研究将搜索 PubMed、Web of Science、Cochrane Library、EMBASE、Medline、中国知网 (CNKI)、万方、中国生物医学文献数据库 (CBM),从建库至 2023 年 5 月 1 日,以确定任何符合条件的研究。出版语言或日期不受限制。我们将只纳入 MT 治疗中风后失语症的随机对照试验。两名研究人员将分别负责研究选择、数据提取和研究质量评估。西方失语症量表 (WAB) 和失语商 (AQ) 将被列为主要结果。波士顿诊断性失语症检查方法 (BDAE)、中国标准失语症检查 (CRRCAE) 将被列为次要结果。统计分析将采用 RevMan V.5.4 软件进行。纳入研究的偏倚风险将通过 Cochrane“偏倚风险”工具进行评估。将使用建议分级评估、发展和评价指南来评估结果证明的质量。
计算机科学与工程系 1,2,3,4 SRM 科学技术学院,Vadapalani 钦奈,印度 摘要:脑中风是一种潜在的致命疾病,当大脑的血液供应突然被切断时就会发生。早期发现和预防对于改善患者的治疗效果至关重要,因为脑中风是全球残疾和死亡的主要原因。随着人工智能和机器学习的发展,人们对使用这些技术创建脑中风预测模型的兴趣日益浓厚。在本文中,我们提出了一种基于深度学习的脑中风预测方法。我们的策略基于卷积神经网络 (CNN) 和循环神经网络 (RNN) 的架构。RNN 分析患者的人口统计信息、病史和测试结果,而 CNN 用于从计算机断层扫描 (CT) 或磁共振成像 (MRI) 扫描等医学图片中提取特征。该模型使用大量患者记录数据集进行训练,包括曾患和未患脑中风的患者。我们的结果表明,上述基于深度学习的策略可以成为早期发现和预防脑卒中的有用工具。医疗保健提供者可以通过识别脑卒中高风险人群,采取主动措施阻止疾病的发生。此外,我们的方法可以与临床决策系统相结合,为患者护理提供即时预测和建议。因此,我们的研究表明,深度学习方法在创建精确可靠的脑卒中预测模型方面具有潜力。未来的研究可能会考察模型预测的可解释性以及我们的模型在不同患者群体和数据源中的通用性 关键词:深度学习、CNN、RNN、早期中风检测、临床决策
中风是全球发病率和死亡率的主要原因之一,它是由脑血液循环中断导致细胞损伤或死亡造成的。缺血性中风是主要的亚型,主要依靠重组组织型纤溶酶原激活剂 (rtPA) 和血管内血栓切除术进行治疗。缺血性中风后的神经系统损伤凸显了了解神经炎症和神经发生之间在脑修复中相互作用的重要性。研究揭示了一种复杂的关系,炎症既促进又阻碍神经发生,从而影响中风后的结果。纹状体的脑室下区 (SVZ) 和海马的颗粒下区 (SGZ) 在成人神经发生中起着关键作用,具有独特的特征和功能。SVZ 神经发生涉及神经母细胞祖细胞迁移到嗅球,而 SGZ 促进颗粒细胞的生成以实现海马功能。了解神经炎症、神经发生和血管生成的复杂过程对于开发有效的中风疗法至关重要。有希望的途径包括药物治疗、选择性血清素再摄取抑制剂、抗体治疗、血管生成刺激、生长因子治疗、激素治疗、miRNA、细胞外囊泡和神经保护剂。干细胞治疗探索各种细胞类型,具有神经元替换和恢复的潜力。总之,揭示 SVZ 和 SGZ 在神经发生中的作用、揭示神经炎症对修复影响的复杂性以及探索多种治疗方法,凸显了进行全面研究以改善中风结果的必要性。中风治疗的多面性带来了挑战,但正在进行的研究为弥合临床前发现和临床治疗之间的差距提供了有希望的途径。
摘要 — 中风是一种严重的疾病,需要及时诊断和治疗,以防止灾难性的后果。在这项工作中,我们提出了一种使用机器学习技术检测脑中风的独特方法。我们采用各种机器学习技术,包括支持向量机 (SVM)、决策树和深度学习模型,以有效地从医学成像数据中识别和分类中风病例。机器学习技术用于中风识别,因为预处理过程对于提高医学图像的质量和降低噪音至关重要。我们研究了许多机器学习架构和方法,例如随机森林、k-最近邻 (KNN) 和卷积神经网络 (CNN),并评估它们在从脑成像数据中准确检测中风方面的有效性。使用大量标记的脑成像扫描数据集对模型进行训练和验证,从而实现全面的性能评估。通过应用预训练模型的迁移学习和数据增强技术,中风病例的识别准确性得到进一步提高。此外,利用形态学操作和特征提取等后处理方法通过微调识别的中风区域来提高整体检测性能。我们的研究结果表明,机器学习算法在从医学影像数据中识别脑卒中方面表现良好,尤其是像 CNN 这样的深度学习模型。建议的方法可以准确、高效地检测脑卒中,这可能有助于医务人员更快地诊断和治疗脑卒中患者。因此,我们的研究得出结论,机器学习算法是一种有用的脑卒中诊断工具,可为医疗专业人员在临床情况下提供有用的资源。
材料和方法:我们创新的 BCI-AO 干预措施解码了用户在完成任务时的专注观察。此过程涉及提供奖励性视觉提示,同时通过 PES 激活传入通路。分析包括 15 名中风患者。所有患者在四种不同的实验条件下接受 15 分钟的 BCI-AO 程序:无 PES 的 BCI-AO、有连续 PES 的 BCI-AO、有触发 PES 的 BCI-AO 和有反向 PES 应用的 BCI-AO。PES 以相当于感觉阈值 120% 的强度和 50 Hz 的频率应用于腕部尺神经。实验随机进行,间隔至少 3 天。为了评估皮质脊髓和周围神经的兴奋性,我们比较了四种条件下患手肌肉的运动诱发电位和 F 波在任务前后(0 后、20 分钟后)的参数。
摘要简介:当脑血管破裂时,大脑会受到一种称为中风的疾病的伤害。当大脑的血液和其他营养物质流动中断时,可能会出现症状。世界卫生组织 (WHO) 声称,中风是全球致残和死亡的主要原因。通过及早发现中风的不同警告症状,可以减轻中风的严重程度。可以使用计算机断层扫描 (CT) 图像快速诊断脑中风。虽然专家们正在研究每一次脑部 CT 扫描,但时间过得很快。这种情况可能会导致治疗延迟和错误。因此,我们专注于使用有效的迁移学习方法进行中风检测。材料和方法:为了提高检测准确性,使用 Red Fox 优化算法 (RFOA) 对大脑中风影响的区域进行分割。然后使用高级 Dragonfly 算法进一步处理处理后的区域。分割后的图像提取包括形态学、小波特征和灰度共生矩阵 (GLCM)。然后使用修改后的 ResNet152V2 对正常和中风图像进行分类。我们使用脑卒中 CT 图像数据集使用 Python 进行测试以进行实施。结果:根据性能分析,所提出的方法优于其他深度学习算法,实现了 99.25% 的最佳准确度、99.65% 的灵敏度、99.06% 的 F1 分数、99.63% 的精确度和 99.56% 的特异性。结论:所提出的基于深度学习的分类系统在考虑性能标准的所有输入预测模型中返回最佳解决方案,并提高了系统的功效;因此,它可以更好地帮助医生和放射科医生诊断脑中风患者。
脑卒中是一种严重的疾病,需要尽快发现才能有效治疗并避免其严重后果。本研究提供了一种基于神经网络的新型脑卒中识别方法。建议的系统利用深度学习技术来评估医学成像数据,特别是磁共振成像 (MRI) 扫描和结构化数据,以便尽早准确地检测与中风相关的问题。该研究的神经网络架构旨在自动识别输入 MRI 图片中的相关元素。该算法通过对包含中风和非中风病例的大量数据集进行训练,学习复杂的模式和暗示中风存在的细微变化。卷积神经网络 (CNNS) 和人工神经网络 (ANN) 用于使模型能够提取具有空间层次结构的特征,从而使模型能够识别数据集中的详细信息。以提高模型的泛化能力。接下来,对中风数据集进行微调,以帮助模型适应中风相关模式的独特特征。为了避免过度拟合,通过使用正则化和复杂的优化技术来增强训练过程。
摘要 中风或脑卒中是导致成年人残疾的主要原因之一。这是一种医疗紧急情况,因此尽快寻求帮助至关重要。迅速就医有助于避免问题和脑损伤。预测疾病发病率、预后和协助医生开出疾病治疗方法只是临床决策中广泛采用的众多预测方法中的几种。这种预测中风分析程序的方法是使用深度学习网络在脑疾病数据集上进行的。该模型的目标是构建一个使用卷积神经网络识别脑卒中的深度学习应用程序。还创建了三个模型来预测结果。拟议的研究使用 CT 扫描(计算机断层扫描)图像数据集来预测和分类中风。介绍 中风是全球第五大死亡原因。中风是一种非传染性感染,占所有死亡率的 11%。它是印度第四大死亡原因。医疗技术的发展使得使用机器学习预测中风的发生成为可能。机器学习算法有助于提供准确的分析和做出正确的预测。本研究使用机器学习预测了脑中风的可能性。根据所用技术的关键组成部分和获得的结果,Nave Bayes 优于其他五种分类算法,并获得了更高的准确度测量。该模型是在文本数据而不是实际大脑图像上训练的,这是一个缺点。本研究展示了六种机器学习分类方法的实施。这项研究可以扩展以纳入所有最新的机器学习技术。从 Kaggle 中挑选一个具有各种生理变量作为其属性的数据集来继续此任务。根据对这些属性的检查,做出最终预测。最初清理数据集,以便机器学习模型更容易掌握。此时,该过程涉及数据预处理。检查数据集是否有空值,并在必要时进行更新。在标签编码之后,如果需要,可以使用独热编码将字符串值转换为数字。经过数据预处理后,数据集被分为训练数据和测试数据。之后,利用新数据和多种分类技术构建模型。为了找到最精确的预测模型,需要计算并比较每种方法的准确率。当模型经过训练并正确确定后,就会生成一个 HTML 网站和一个 Flask 应用程序。在 Web 应用程序中,用户输入预测值。Flask 应用程序将 Web 应用程序与经过训练的模型连接起来。该研究经过彻底的分析后得出结论,哪种算法最适合预测中风。
摘要背景:中风患者的主要症状是上肢偏瘫和手部功能丧失。联合使用功能性电刺激和机械手套可以克服单独应用的局限性。目的/目标:评估机械手套和功能性电刺激对改善中风后患者手部功能的综合效果及其对生活质量的影响。方法:从 PUBMED、Google Scholar 和 Cochrane 等在线资源中搜索了 2011 年至 2022 年期间发表的不同文章。本综述包括实验研究、临床试验、初步调查、试点研究、随机对照试验。还对所有已确定文章的参考文献列表进行了二次搜索。然后对每项研究进行独立审查。结果:共搜索了 30 篇文章。在 30 项研究中,筛选出了 10 项,其中 4 项研究因方法学缺陷被排除在外。其余 6 项支持性研究报告称,功能性电刺激和机器人手套的结合作用比单独使用常规疗法更有利于改善手部功能。结论:因此,可以得出结论,功能性电刺激和机器人手套比常规疗法更有效地改善中风后患者的特定任务,例如完全伸展、抓握、释放、举重任务、饮水等。关键词:功能性电刺激、手部康复、机器人手套、中风。引言根据世界卫生组织的定义,中风是一种临床综合征,包括迅速发展的局部脑功能紊乱临床症状,持续时间超过 24 小时或导致死亡,除血管起源外没有明显原因。(1)根据 1990 年的全球疾病负担 (GBD) 研究,中风是全球第二大死亡原因。(2)中风幸存者表现出身体功能障碍,例如神经肌肉骨骼和运动相关功能的显着偏差或丧失