丘脑底核 (STN) 和苍白球内核 (GPi) 的深部脑刺激 (DBS) 是治疗帕金森病运动症状的有效方法。尽管其治疗机制尚不清楚,但有研究表明,初级运动皮层 (M1) 的反向激活在介导其治疗效果方面起着重要作用。本研究检验了以下假设:M1 的反向激活是 STN 和 GPi DBS 治疗效果的一个显著特征。使用高密度微电极阵列在两只帕金森病非人类灵长类动物中记录了 M1 中的单元活动,每只动物都植入了针对 STN 和 GPi 的 DBS 导线。每个 DBS 靶标的刺激都有类似的治疗效果,但是,仅在 STNDBS 期间观察到 M1 的反向激活。尽管接受 STN DBS 的两只动物均具有相似的有益效果,但每种动物中反向分类细胞的比例不同,分别为 30% 和 6%。在连续 4 小时的 STN DBS 中,反向激活变得不那么强烈,而治疗效果却得以保持。尽管反向激活随着时间的推移而减弱,但在整个 4 小时内,M1 自发尖峰的同步显着降低。虽然我们不能至少在 STNDBS 的急性期忽略反向 M1 激活的潜在治疗作用,但动物和目标部位之间观察到的反向激活的差异引发了对其假设作用作为 DBS 治疗效果的主要机制的疑问。这些结果进一步支持了 M1 水平同步性的降低是 DBS 治疗效果的重要因素。
这篇早期发布的文章已经过同行评审并被接受,但尚未经过撰写和编辑过程。最终版本在风格或格式上可能略有不同,并将包含指向任何扩展数据的链接。
虽然丘脑底核中β频带振荡同步的过度爆发与帕金森病的运动障碍有关,但一直缺乏将这两种现象联系起来的合理机制。在这里,我们检验了以下假设:β爆发所表示的同步增加可能会损害基底神经节网络中的信息编码能力。为此,我们记录了18名帕金森病患者在执行提示的上肢和下肢运动时丘脑底核中的局部场电位活动。我们使用每次试验中基于局部场电位对要移动的肢体进行分类的准确性作为系统所掌握的有关预期动作的信息的指标。使用朴素贝叶斯条件概率模型的机器学习用于分类。局部场电位动态可以在执行之前准确预测预期动作,当提前知道要求的动作时,在命令提示之前,受试者工作特征曲线下面积为 0.80 0.04。α 频段局部场电位活动爆发,尤其是 β 频段局部场电位活动爆发,严重影响了对要移动的肢体的预测。我们得出结论,低频爆发,尤其是 β 频段的爆发,限制了基底神经节系统编码有关预期动作的生理相关信息的能力。当前的发现也很重要,因为它们表明,除了恢复性脑机接口应用中的力量控制外,局部丘脑底活动可能被解码以实现效应器选择。
字数 22 摘要:247 23 引言:616 24 讨论:1770 25 26 利益冲突:JL Vitek 担任 Medtronic、Boston Scientific 和 Abbott 的顾问,27 担任外科信息科学科学顾问委员会成员。 28 29 资金来源:NIH NINDS:R01NS037019、R37NS077657、P50 NS098573 30 MnDRIVE(明尼苏达州发现、研究和创新经济)脑部疾病计划,31 Engdahl 家族基金会 32 33
对 40 只成年猫 (Felis catus domesticus)(其中 23 只雌性,17 只雄性)的脑底部动脉排列进行了研究。为此,用可聚合丙烯酸树脂从 10 个标本中制作头部动脉系统的模型,并在另外 30 个个体中用氯丁橡胶乳胶填充头部动脉系统。大脑底部的动脉依赖于颈动脉系统和椎基底动脉系统,负责形成大脑的动脉回路。脑动脉回路的前端部分相对于脑底部横向排列,类似于椭圆形,并由前端交通动脉 (60%) 封闭。该回路的尾部呈现出形态学特征,即不对称性和其自身的排列,对于每个样本而言,因此不可能与几何图形建立对应关系,它仍然被脑颈动脉的尾部分支和基底动脉的末端分支封闭,在两个对流管中,还观察到该回路内部存在网络结构(100%)。猫的脑血管模式趋向于从亚型 2 alpha 到亚型 2 beta,这是由 DE VRIESE (1905) 提出的,并且是在其系统发育发展的中期和最终阶段之间发现的,这是由 TESTUT (1911) 考虑的。