在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
摘要 目的。本研究旨在通过优化基于整体和频谱大脑动力学特征的预测多元模型,阐明在视觉引导的等长收缩任务中维持恒定力量水平背后的大脑动力学。方法。18 名受试者被要求按压灯泡并保持恒定的力量水平(屏幕上的条形图显示),并获取脑电图 (EEG)。对于 500 毫秒的间隔,我们计算了力量稳定性指数以及大脑动力学指数:微状态指标(持续时间、发生率、整体解释方差、方向优势)和 θ、低 alpha、高 alpha 和 beta 波段的 EEG 频谱幅度。我们优化了一个多元回归模型(偏最小二乘 (PLS)),其中微状态特征和频谱幅度是输入变量,力量稳定性指数是输出变量。使用 PLS 嵌套交叉验证方法解决了输入变量之间的共线性和模型的普遍性相关问题。主要结果。优化的 PLS 回归模型达到了良好的普遍性,并成功显示了微状态和光谱特征在推断施加力的稳定性方面的预测价值。与视觉和执行控制网络相关的微状态持续时间越长、发生率越高,收缩性能就越好,这与视觉系统和执行控制网络在视觉运动整合中所起的作用一致。意义。微状态指标和脑节律幅度的组合不仅可以在群体层面,而且在个体层面被视为稳定的视觉引导运动输出的生物标志物。我们的研究结果可能对更好地理解单次试验或实时应用中的运动控制以及运动控制研究发挥重要作用。
随着脑监测领域的快速发展,对处理相关信号的创新方法的需求日益增加。最近,图信号处理成为逐个信号分析的有力替代方案,它能够处理信号集合。对于自然接受图形表示的脑电图 (EEG) 信号尤其如此,每个电极对应一个图节点。这些信号经常被以重尾统计数据为特征的脉冲噪声破坏,从而导致传统去噪技术失败。为了解决这个问题,我们提出了一种基于分数低阶矩的有效正则化图滤波方法,该方法可以更好地适应重尾统计数据。对真实 EEG 测量结果(包括公开的 P300 数据集和癫痫信号)的实验评估表明,与成熟的 EEG 信号去噪方法相比,我们的方法具有更优异的去噪性能。
离子电扩散和水运动的数学建模正在成为一种强有力的研究途径,为大脑稳态提供新的生理学见解。然而,为了提供可靠的答案和解决争议,预测的准确性至关重要。离子电扩散模型通常包括非线性和高度耦合的偏微分方程和常微分方程的非平凡系统,这些方程控制着不同时间尺度上的现象。在这里,我们研究与近似这些系统相关的数值挑战。我们考虑了一个脑组织电扩散和渗透的均质模型,并提出和评估了不同的相关有限元分裂方案的数值特性,包括理想场景和皮质扩散抑制 (CSD) 的生理相关设置的准确性、收敛性和计算效率。我们发现,对于具有平滑制造解决方案的问题,这些方案在空间中显示出最佳收敛率。然而,生理 CSD 设置具有挑战性:我们发现 CSD 波特性(波速和波宽)的精确计算需要非常精细的空间和精细的时间分辨率。
脑电图 (EEG) 是通过放大和记录人体头皮上由大脑电流产生的电活动而获得的记录 (Zandi 等人,2011;Larson 和 Taulu,2018)。EEG 是脑成像科学中广泛使用的媒介,在脑机接口 (BCI;Gao 等人,2021) 研究中发挥着重要作用。BCI 是一种将脑信号转换为有用命令的在线计算机系统。到目前为止,不同类型的脑信号已被用于开发 BCI 系统。由于其方便和低成本,EEG 信号已成为 BCI 系统中的主要媒介。然而,实践证明,由于 EEG 信号能量较弱,EEG 信号的采集很容易受到各种噪声的干扰。为了从嘈杂的 EEG 信号中提取有用信息 (Shad 等人,2020),在 EEG 信号分析中研究了各种信号处理方法。在脑信号分析中,提高信噪比是一个重要的预处理步骤。传统上,它是使用快速傅里叶变换(FFT)完成的(Wahab et al., 2021)。在BCI中,FFT也用于从EEG信号中实现显著特征的提取。短时傅里叶变换是FFT的增强,它可以生成EEG的二维频谱表示(Ha and Jeong,2019)。然而,STFT的主要缺点是其频率分辨率不可调。Huang提出了一种将STFT与卷积神经网络相结合用于生物医学信号分类的方法(Huang et al., 2019)。此外,基于傅里叶分析的数字滤波器也是EEG信号去噪的重要工具(Hsia and Kraft,1983)。它们的应用包括噪声伪影去除、特定频带的特征选择。尽管近年来新的脑电滤波技术不断涌现,但滤波技术并不是 BCI 研究的重点,相关研究也报告了数字滤波器的缺点(Alhammadi and Mahmoud,2016)。在过去的几十年中,随着计算能力的提高,许多更先进的信号处理方法被发明并投入实践。Upadhyay 提出了一种结合 S 变换和独立成分分析的新技术,用于脑电信号中的伪影消除和噪声抑制(Upadhyay et al.,2016)。Djemili 利用经验模态分解将脑电信号分解为固有模态函数,实现了正常和癫痫脑电特征的智能分类(Djemili et al.,2016)。Jiang 的研究中,提出了一种基于多词典的稀疏表示方法,用于癫痫脑电尖峰的自动检测(Jiang et al.,2020)。 Dora 应用变分模态分解来校正 EEG 测量中的伪影(Dora 和 Biswal,2020 年)。Chen 提出了一种稀疏傅里叶变换,并将其应用于电力线伪影消除(Chen et al.,2021b)。
摘要。目的:本研究的创新之处在于探索了多种脑电波信号数据预处理的新方法,其中提取统计特征,然后根据降维算法选择它们的顺序将其格式化为视觉图像。然后,这些数据被处理为 2D 和 3D CNN 的视觉输入,然后进一步提取“特征的特征”。方法:从三个脑电图数据集得出的统计特征在视觉空间中呈现,并分别在 2D 和 3D 空间中处理为像素和体素。对三个数据集进行了基准测试,即来自四个 TP9、AF7、AF8 和 TP10 10-20 电极的心理注意力状态和情绪价以及来自 64 个电极的眼睛状态数据。通过三种选择方法选择了 729 个特征,以便从相同的数据集中形成 27x27 图像和 9x9x9 立方体。为 2D 和 3D 预处理表示而设计的 CNN 学习从数据中卷积有用的图形特征。主要结果:70/30 分割方法表明,在 2D 中,特征选择分类准确度最高的方法是注意力状态的单一规则和情绪状态的相对熵。在眼部状态数据集中,3D 空间最佳,由对称不确定性选择。最后,使用 10 倍交叉验证来训练最佳拓扑。最终最佳 10 倍结果是注意力状态(2D CNN)97.03%,情绪状态(3D CNN)98.4%,眼部状态(3D CNN)97.96%。意义:本研究提出的框架的结果表明,CNN 可以成功地从一组预先计算的原始 EEG 波的统计时间特征中卷积出有用的特征。 K 折验证算法的高性能表明,除了预先计算的特征之外,CNN 学习到的特征还包含对分类有用的知识。
摘要 本研究旨在利用机器学习技术和便携式无线传感设备 EPOC+,对情绪识别中使用不同长度的时间窗口 (TW) 进行比较分析。本研究以个体在情绪刺激过程中提取的脑电信号数据集为基础,以熵为特征,评估不同分类器模型在不同 TW 长度下的性能。进行了两种类型的分析:被试间和被试内。在五种监督分类器模型中比较了准确率、曲线下面积和 Cohen's Kappa 系数等性能指标:K最近邻 (KNN)、支持向量机 (SVM)、逻辑回归 (LR)、随机森林 (RF) 和决策树 (DT)。结果表明,在两种分析中,所有五种模型在 2 至 15 秒的 TW 中均表现出较高的性能,其中 10 秒 TW 在被试间分析中尤为突出,5 秒 TW 在被试内分析中尤为突出;此外,不建议使用超过20秒的TW。这些结果为研究情绪时EEG信号分析中选择TW提供了有价值的指导。
摘要:脑机接口(BCI)利用神经活动作为控制信号,实现人脑与外部设备之间的直接通信,通过脑电图(EEG)捕捉大脑产生的电信号,将其转化为反映用户行为的神经意图,正确解码神经意图才能实现对外部设备的控制。基于强化学习的BCI增强解码器仅基于环境的反馈信号(奖励)完成任务,构建了从神经意图到适应变化环境的动作的动态映射通用框架。但使用传统的强化学习方法存在维数灾难、泛化能力差等挑战。因此,本文利用深度强化学习构建解码器以正确解码EEG信号,通过实验证明其可行性,并在具有高动态特性的运动成像(MI)EEG数据信号上展示其更强的泛化能力。
由于脑电图 (EEG) 的非侵入性和高精度,EEG 和人工智能 (AI) 的结合经常被用于情绪识别。然而,EEG 数据的内部差异已成为分类准确性的障碍。为了解决这个问题,考虑到来自性质相似但不同领域的标记数据,领域自适应通常提供一个有吸引力的选择。大多数现有研究将来自不同受试者和会话的 EEG 数据聚合为源域,忽略了源具有一定边际分布的假设。此外,现有方法通常仅对齐从单个结构中提取的表示分布,并且可能仅包含部分信息。因此,我们提出了用于跨域 EEG 情绪识别的多源和多表示自适应 (MSMRA),它将来自不同受试者和会话的 EEG 数据划分为多个域,并对齐从混合结构中提取的多个表示的分布。使用两个数据集 SEED 和 SEED IV 在跨会话和跨主题传输场景中验证所提出的方法,实验结果证明我们的模型在大多数情况下比最先进的模型具有更优越的性能。