绝对音高 (AP) 是指无需外界参考即可轻松识别乐音的能力,其神经基础尚不清楚。关键问题之一是这一现象背后是感知过程还是认知过程,因为感觉和高级大脑区域都与 AP 有关。为了整合对 AP 的感知和认知观点,我们在此研究了感觉和高级大脑区域对 AP 静息态网络的共同贡献。我们对大量 AP 音乐家 (n = 54) 和非 AP 音乐家 (n = 51) 的源级 EEG 进行了全面的功能网络分析,采用两种分析方法:首先,我们应用基于 ROI 的分析来检查听觉皮层和背外侧前额叶皮层 (DLPFC) 之间的连接,使用几种已建立的功能连接测量方法。这项分析重复了之前的一项研究,该研究报告了 AP 音乐家这两个区域之间的连接增强。其次,我们对相同的功能连接测量进行了基于全脑网络的分析,以更全面地了解可能涉及支持 AP 能力的大规模网络的大脑区域。在我们的样本中,基于 ROI 的分析没有提供听觉皮层和 DLPFC 之间 AP 特定连接增加的证据。全脑分析显示,AP 音乐家的三个网络连接增加,包括额叶、颞叶、皮层下和枕叶区域的节点。在感觉和大脑周边区域的高级区域都发现了网络的共同点。需要进一步研究来证实这些探索性结果。
内在语言的潜力和实用性对于开发实用的日常脑机接口 (BCI) 应用至关重要,因为它代表了一种独立于外部刺激运行的大脑信号,但由于在解读其信号方面面临挑战,它在很大程度上尚未得到充分开发。在本研究中,我们在公开可用的数据集上评估了各种机器学习 (ML) 和深度学习 (DL) 模型的行为,采用流行的预处理方法作为特征提取器来增强模型训练。我们面临着重大挑战,例如受试者相关的变异性、高噪声水平和过度拟合。为了特别解决过度拟合问题,我们建议使用“BruteExtraTree”:一种依赖于从其基础模型 ExtraTreeClassifier 继承的中等随机性的新分类器。该模型不仅在我们的实验中与最佳深度学习模型 ShallowFBCSPNet 相匹配,在主题无关场景中达到 32% 的准确率,而且在主题相关情况下达到 46.6% 的平均主题准确率,超越了最先进的模型。我们在主题相关情况下的结果显示,使用受 LLM 预训练启发的内部语音数据的新范式是可能的,但我们也强调,迫切需要彻底改变数据记录或噪声消除方法,以便在主题无关情况下实现更实际的准确率。
摘要 — 深度学习在计算机视觉领域的成功启发了科学界探索新的分析方法。在神经科学领域,特别是在电生理神经成像领域,研究人员开始探索利用深度学习来预测他们的数据,而无需进行广泛的特征工程。本文使用两种不同的深度卷积神经架构比较了使用经过最低限度处理的 EEG 原始数据的深度学习与使用 EEG 光谱特征的深度学习。其中一个来自 Putten 等人 (2018),专门用于处理原始数据;另一个来自 VGG16 视觉网络 (Simonyan and Zisserman, 2015),旨在处理 EEG 光谱特征。我们应用它们对来自 1,574 名参与者的大型语料库的 24 通道 EEG 进行性别分类。我们不仅改进了此类分类问题的最新分类性能,而且还表明在所有情况下,与光谱 EEG 特征相比,原始数据分类可带来更出色的性能。有趣的是,我们表明,专门用于处理 EEG 频谱特征的神经网络在应用于原始数据分类时性能有所提高。我们的方法表明,用于处理 EEG 频谱特征的相同卷积网络在应用于 EEG 原始数据时可产生优异的性能。
a 马来西亚霹雳州国油工艺大学健康与分析研究所 b 马来西亚霹雳州国油工艺大学自治系统研究所 c 马来西亚霹雳州国油工艺大学电气与电子工程系 d 马来西亚吉兰丹马来西亚理科大学神经科学系 e 法国勃艮第大学 ERL VIBOT CNRS 6000 电子、信息与图像实验室 (Le2i)
我们展示并分享了一个大型数据库,其中包含来自 87 名人类参与者的脑电信号,这些信号是在一天的脑机接口 (BCI) 实验中收集的,分为 3 个数据集 (A、B 和 C),所有数据集均使用相同的协议记录:右手和左手运动想象 (MI)。每个会话包含 240 次试验(每个类别 120 次),代表超过 20,800 次试验,或大约 70 小时的记录时间。它包括相关 BCI 用户的表现、有关人口统计、个性特征以及一些认知特征的详细信息以及实验说明和代码(在开源平台 OpenViBE 中执行)。这样的数据库可用于各种研究,包括但不限于:(1) 研究 BCI 用户的个人资料与其 BCI 表现之间的关系,(2) 研究 EEG 信号属性如何因不同用户的个人资料和 MI 任务而变化,(3) 使用大量参与者设计跨用户 BCI 机器学习算法或 (4) 将用户的个人资料信息纳入 EEG 信号分类算法的设计中。
这项事件相关电位 (ERP) 研究旨在检查在患有诵读困难的成年人中,词语阅读障碍在四个认知过程流中的哪个点发生。14 名以法语为母语的诵读困难者与 18 名匹配的对照者执行了延迟音位词汇决策任务,该任务是判断视觉刺激听起来是否像法语单词。实验中呈现的 300 个刺激均匀分布在五种实验条件下(60 个具体的法语单词、60 个伪同音词、60 个伪词、60 个辅音和 60 个符号串)。至关重要的是,与对照组相比,诵读困难者的两种涉及音位信息的语言过程,即字素到音素的转换 (N320) 和音位信息的记忆检索 (Late Positive Complex) 均受损。此外,词汇获取 (N400) 受到六个被认为是诵读困难可靠标志的预测变量的显著调节。相比之下,出乎意料的是,两组参与者的早期视觉专业知识过程(N170)似乎以相同的方式运作。阅读障碍的根源可能主要在于单词阅读过程中的某些语音处理方面。这些发现支持了一种临床神经生理学模型,该模型假设阅读障碍患者在阅读过程中至少有两个语音过程可能受损,即字素到音素的转换和语音信息的记忆检索。
脑电图 (EEG) 是一种广泛用于临床和日常生活的大脑活动测量设备。除了去噪和潜在分类之外,EEG 处理中的一个关键步骤是提取相关特征。拓扑数据分析 (TDA) 作为一种新兴工具,能够从不同于传统方法的角度分析和理解数据。作为图分析的高维类比,TDA 可以模拟成对关系之外的丰富交互。它还区分了 EEG 时间序列的不同动态。TDA 在 EEG 处理界仍然鲜为人知,但它非常适合 EEG 信号的异构性质。这篇简短的评论旨在快速介绍 TDA 以及如何将其应用于包括脑机接口 (BCI) 在内的各种应用中的 EEG 分析。在介绍本文的目的之后,本文解释了 TDA 的主要概念和思想。接下来,详细介绍了如何将其实现为 EEG 处理,最后讨论了该方法的优点和局限性。
高维脑电图 (EEG) 协方差矩阵的维数降低对于在脑机接口 (BCI) 中有效利用黎曼几何至关重要。在本文中,我们提出了一种新的基于相似性的分类方法,该方法依赖于 EEG 协方差矩阵的维数降低。传统上,通过将原始高维空间投影到一个低维空间来降低其维数,并且仅基于单个空间学习相似性。相反,我们的方法,多子空间 Mdm 估计 (MUSUME),通过解决所提出的优化问题获得多个可增强类可分性的低维空间,然后在每个低维空间中学习相似性。这种多重投影方法鼓励找到对相似性学习更有用的空间。使用高维 EEG 数据集(128 通道)进行的实验评估证实,MUSUME 在分类方面表现出显著的改进(p < 0.001),并且显示出超越仅依赖一个子空间表示的现有方法的潜力。
使用 Takens 定理评估 EEG 轨迹:大脑动力学的区域变化 Arturo Tozzi(通讯作者) 美国德克萨斯州登顿市北德克萨斯大学物理系非线性科学中心 1155 Union Circle, #311427 Denton, TX 76203-5017 USA tozziarturo@libero.it Ksenija Jaušovec 马里博尔大学心理学系 ksenijamarijausovec@gmail.com 摘要 Takens 定理 (TT) 证明动态系统的行为可以在多维相空间内有效重建。这为检查时间序列数据的时间依赖性、维度复杂性和可预测性提供了一个全面的框架。我们应用 TT 来研究健康受试者 EEG 大脑动力学的生理区域差异,重点关注三个关键通道:FP1(额叶区域)、C3(感觉运动区域)和 O1(枕叶区域)。我们使用时间延迟嵌入为每个 EEG 通道提供了详细的相空间重建。重建的轨迹通过测量轨迹扩展和平均距离进行量化,从而深入了解传统线性方法难以捕捉的大脑活动的时间结构。发现三个区域的变异性和复杂性不同,显示出明显的区域差异。FP1 轨迹表现出更广泛的扩展,反映了与高级认知功能相关的额叶大脑活动的动态复杂性。参与感觉运动整合的 C3 表现出中等变异性,反映了其在协调感觉输入和运动输出方面的功能作用。负责视觉处理的 O1 显示出受限且稳定的轨迹,与重复和结构化的视觉动态一致。这些发现与不同皮质区域的功能特化相一致,表明额叶、感觉运动和枕叶区域具有自主的时间结构和非线性特性。这种区别可能对增进我们对正常大脑功能的理解和促进脑机接口的发展具有重要意义。总之,我们证明了 TT 在揭示脑电图轨迹区域变化方面的实用性,强调了非线性动力学的价值。关键词:脑电图分析;脑动力学;相空间重建;区域变化。引言人类大脑是一个复杂的非线性系统,善于通过动态交互处理大量信息(Khoshnoud 等人,2018 年;Zhao 等人,2020 年;Dai 等人,2022 年;Biloborodova 等人,2024 年)。脑电图 (EEG) 是一种非侵入性、高分辨率的脑活动研究方法。尽管如此,传统的线性分析技术往往无法表示脑电图信号复杂的非线性特征(Alturki 等人,2020 年)。为了解决这一限制,非线性动力学和混沌理论已成为理解大脑活动的有力框架,其中 Takens 定理(以下简称 TT)奠定了基础。TT 确定了动态系统的行为可以在多维相空间中使用来自观测数据的单个时间序列的时间延迟版本重建(Takens 1981)。在 EEG 分析中,TT 提供了一种强大的数学工具来研究时间演变,揭示了线性方法无法发现的特性(Rohrbacker 2009)。通过重建相空间,研究人员可以分析关键的 EEG 动态特性,例如时间依赖性、维度复杂性和可预测性(Kwessi 和 Edwards,2021)。这种方法已被证明可用于识别与各种认知和病理状况相关的神经动力学变化(Fell 等人,2000 年)。先前的研究强调了 TT 在分析脑电信号方面的有效性,尤其是在识别癫痫、阿尔茨海默病和精神分裂症等病理状况方面(Kannathal 等人,2005 年;Altındi ş 等人,2021 年;Cai 等人,2024 年;Al Fahoum 和 Zyout,2024 年)。然而,人们较少关注这种方法在正常条件下评估大脑动态区域变化的应用。不同的大脑区域表现出不同的电活动模式,反映了它们在认知、感觉和运动功能中的特殊作用。例如,额叶区域 (FP1) 与决策和工作记忆等高级认知过程有关。感觉运动皮层 (C3) 控制运动并整合感觉输入,而枕叶区域 (O1) 处理视觉信息。尽管这些区域的作用独特,但它们之间的相互作用有助于大脑的整体动态。2024)。然而,人们较少关注这种方法在正常情况下评估大脑动态区域变化的应用。不同的大脑区域表现出不同的电活动模式,反映了它们在认知、感觉和运动功能中的特殊作用。例如,额叶区域(FP1)与决策和工作记忆等高级认知过程有关。感觉运动皮层(C3)控制运动并整合感觉输入,而枕叶区域(O1)处理视觉信息。尽管它们的作用独特,但这些区域之间的相互作用有助于大脑的整体动态。2024)。然而,人们较少关注这种方法在正常情况下评估大脑动态区域变化的应用。不同的大脑区域表现出不同的电活动模式,反映了它们在认知、感觉和运动功能中的特殊作用。例如,额叶区域(FP1)与决策和工作记忆等高级认知过程有关。感觉运动皮层(C3)控制运动并整合感觉输入,而枕叶区域(O1)处理视觉信息。尽管它们的作用独特,但这些区域之间的相互作用有助于大脑的整体动态。
摘要 - 对心理健康和幸福解决方案的需求不断增长,导致了冥想技术的进步。传统应用程序主要侧重于指导课程,而不提供实时性能监控或可操作的见解。提出的 AI 冥想应用程序结合了人工智能 (AI) 和脑电图 (EEG) 技术来解决这些差距。主要功能包括用于监测注意力的计算机视觉、用于评估情绪健康的自然语言处理 (NLP) 和用于跟踪正念和休息水平的 EEG。本文全面概述了该应用程序的架构、实现和性能评估。结果表明,眼动追踪 (98%)、情绪分析 (85%) 和基于 EEG 的正念评估具有很高的准确性。AI 冥想应用程序是朝着创建个人和企业健康的监督和富有洞察力的冥想工具迈出的开创性一步。索引术语 - 脑电图 (EEG)、情绪健康分析、正念跟踪