患者数据记录室。 用于患者数据存储的 HP 服务器。 用于 MEG 采集室的 UPS 备份。 男女病房(每个病房 3 张床)均配备基本医疗设备。 专用计算机工作站,配备用于患者数据分析的软件。
通过植入皮层或皮层下结构与大脑交互的设备对于感觉或运动功能障碍患者的恢复和康复具有巨大潜力。典型的植入手术是根据完整功能生成的大脑活动图来规划的。然而,由于目标人群的残留功能异常,以及越来越多的植入硬件与 MRI 不兼容,因此绘制大脑活动图以规划植入手术具有挑战性。在这里,我们介绍了在瘫痪患者和现有脑机接口 (BCI) 设备中绘制受损体感和运动功能的方法和结果。脑磁图 (MEG) 用于直接绘制经皮电刺激和受损手部尝试运动期间引起的神经活动。发现诱发场与预期的解剖学和躯体组织相符。这种方法可能对引导植入物在其他应用中很有价值,例如用于疼痛的皮层刺激以及改善植入物定位以帮助减小开颅尺寸。
摘要 目的。本研究的目的是通过机器学习方法识别受试者之间共享的相位耦合模式,该方法利用来自工作记忆 (WM) 任务的源空间脑磁图 (MEG) 相位耦合数据。事实上,神经振荡的相位耦合被认为是远距离大脑区域之间通信的关键因素,因此在执行认知任务(包括 WM)时至关重要。以前研究认知任务期间相位耦合的研究通常集中在几个先验选择的大脑区域或特定频带上,并且已经认识到需要数据驱动的方法。机器学习技术已成为分析神经成像数据的宝贵工具,因为它们可以捕捉多元信号分布中的细粒度差异。在这里,我们期望这些应用于 MEG 相位耦合的技术可以揭示个体之间共享的 WM 相关过程。方法。我们分析了作为人类连接组项目的一部分收集的 WM 数据。当受试者 (n = 83) 在两种不同条件下执行 N -back WM 任务时收集 MEG 数据,即 2-back(WM 条件)和 0-back(控制条件)。我们估计了这两种条件以及 theta、alpha、beta 和 gamma 波段的相位耦合模式(多元相位斜率指数)。然后使用获得的相位耦合数据训练线性支持向量机,以便使用跨受试者交叉验证方法对受试者正在执行的任务条件进行分类。分类是根据来自各个频带的数据和所有频带的组合(多频带)分别进行的。最后,我们通过特征选择概率评估了不同特征(相位耦合)对分类的相对重要性。主要结果。分别根据 theta(62% 准确率)和 alpha 波段(60% 准确率)中的相位耦合模式成功地对 WM 条件和控制条件进行了分类。重要的是,多波段分类表明,不仅在 theta 和 alpha 波段,而且在 gamma 波段中的相位耦合模式也与 WM 处理有关,分类性能的提高 (71%) 证明了这一点。意义。我们的研究使用 MEG 源空间功能连接成功解码了 WM 任务。我们的方法结合了跨主题分类和我们小组最近开发的多维指标,能够检测到个体之间共享的连接模式。换句话说,结果可以推广到新的个体,并允许对与任务相关的相位耦合模式进行有意义的解释。
由于 MEG 和脑电图 (EEG) 似乎是姊妹电生理技术,两者都对脑细胞内和脑细胞之间的电化学电流流动敏感,因此 MEG 有时被认为等同于 EEG,具有有限的科学附加价值。我们驳斥了这种误解,并解释了不同的物理原理如何使这两种模式在许多方面互补而不是纯粹是多余的。具体而言,我们认为 MEG 是直接和非侵入性访问整个大脑电生理活动的最佳组合,具有亚毫秒时间分辨率和分辨大脑区域之间活动的能力,通常具有令人惊讶的空间和光谱区分以及最小偏差。事实上,与 EEG 不同,MEG 源映射的准确性不受头部组织复杂分层引起的信号失真的影响,具有高度异质的电导率曲线,无法在体内精确测量。