肠道微生物组是大脑和胃肠道之间相互作用的复杂网络,在人类健康和疾病中发挥着关键作用。微生物组-肠脑轴 (GBA) 是大脑情绪和认知中心与外周肠道功能之间的重要连接点,强调了肠道健康对整体健康的深远影响。GBA 的特点是肠道和大脑之间存在共生关系,调节炎症细胞因子和神经递质的表达。MGBA 还受微生物代谢物的调节,例如短链脂肪酸 (SCFA) 和脂肪酸衍生物。本文重点介绍了 GBA 在调节肠道健康方面的重要性以及针对性治疗干预措施改善健康结果的潜力。这项研究的意义深远,表明旨在调节肠道生物群的未来策略可能为个性化医疗和饮食干预的发展提供有希望的途径。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。此预印本版的版权持有人于2023年2月20日发布。 https://doi.org/10.1101/2022.09.15.222279275 doi:medrxiv preprint
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
研究表明,到2050年,由于淀粉样蛋白和tau蛋白的积累,有超过1.5亿人将患有阿尔茨海默氏病(AD)。除了遗传背景,内分泌干扰和细胞衰老外,肠道菌群的管理还成为AD诊断,进展和治疗的关键因素,因为某些细菌代谢物可以通过血液流过血流并跨越血脑屏障。这个迷你审查探讨了果蝇果蝇中的tau蛋白积累与肠道营养不良之间的关系。该模型有助于研究肠道衍生的代谢产物如何促进神经认知障碍和痴呆症。了解直接和间接细菌副产品(例如乳酸和乙酸酯)在神经胶质细胞活化和TAU蛋白动力学中的作用可能会提供对AD进展机制的见解,并有助于更有效的治疗方法。在这里,我们讨论了果蝇的简单性和广泛的遗传工具如何使其成为研究这些相互作用和测试潜在疗法(包括益生菌)的宝贵模型。将果蝇研究与其他已建立的模型整合在一起可能会揭示保守的途径,并加速发现为临床应用的翻译。
长期的人类空间传播会导致眼睛和大脑的变化,这些空间被称为空间 - 空间相关的神经眼综合征(SANS)。这些变化可能表现为症状的星座,其中可能包括视盘水肿,视神经鞘延伸,脉络膜褶皱,地球量,触角偏移,远视和棉质羊毛斑点。尽管尚不清楚SAN的基础机制,但在微重力诱导的头部液体移位后,贡献者可能包括颅内间质流体积累。对SAN的对策的开发和验证有助于我们对病因的理解,并加速了新技术,包括运动方式,下半身负压套件,静脉大腿袖口和阻抗阈值设备。然而,仍然存在显着的知识差距,包括生物标志物,一组完整的对策和/或治疗方案以及最终可靠的基于地面的类似物,以加速研究。欧洲航天局SANS专家小组的这项审查总结了过去的研究和当前有关SAN,潜在对策和关键知识差距的知识,以进一步我们在人类太空中对SAN的理解,预防和治疗,既可以进行人类空间和未来的外地地面探索。
应变工程已成为一种强大的技术,可以调整二维半导体(如钼二二二硫化物)的电子和光学特性(MOS 2)。尽管几项理论作品预测双轴菌株比单轴菌株更有效,以调整MOS 2的带状结构,但文献中仍缺少直接的实验性验证。在这里,我们实施了一个简单的实验设置,该设置允许通过弯曲十字形聚合物底物施加双轴应变。我们使用该设置来研究双轴菌株对12个单层MOS 2平流的差异反射光谱的影响,以40 MEV/%和110 MeV/%的双轴张力介绍了激子特征的红移。我们还直接比较了双轴和单轴应变对同一单层MOS 2发现的效果,即双轴应变量表因子是单轴菌株1的2.3倍。
与焊接海洋结构相关的环境载荷和结构几何形状通常会产生多轴应力。大型焊接细节已用于表征海洋结构中的多轴疲劳响应;然而,这些测试的成本通常过高。对多轴疲劳文献进行了审查,以确定可用于预测多轴疲劳响应的分析技术。确定并总结了各种方法。参考了支持文献。在可用的情况下介绍了多轴方法的可靠性(偏差和散度)。确定了影响多轴疲劳响应的各种因素。以焊接细节为例,展示如何从单轴疲劳试验数据中获得多轴疲劳寿命预测。最后,建议开展研究以促进多轴疲劳研究向海洋结构的技术转移。
使机壳制造的生产率发生了重大变化。其中包括:设计一种新型气动夹具,用于在加工过程中固定部件;建立最佳加工参数,以积极影响材料进给率、刀具几何形状和刀具动力学。该研究还包括与合作伙伴 Sandvik Coromant 合作开发刀具磨损机制和刀具涂层以及超高压冷却液系统,以延长加工刀具寿命,并为每个零件建立优化的制造操作顺序,确保最短的制造周期时间,同时保持产品质量。