• SPSE:石油仓库多年期合同 • FLUXEL:Fos 和 Lavéra 码头多年期合同,• PETROINEOS:Lavéra 平台多年期合同,• ARCELOR MITTAL:Fos sur Mer 工厂工作,• TOTAL France:普罗旺斯炼油厂多年期合同,• ASCOMETAL:Fos sur Mer 工厂年度合同,• LYONDELLBASELL Berre 和 LYONDELL Chimie Fos。 • INEOS CHEMICALS、• 液化空气 • SOLAMAT MEREX • SPIE、CEGELEC、CLEMESSY、SNEF、SPIE • ADF、BOCCARD、CNIM、ENDEL、FOURE LAGADEC、IREM、ORTEC、PONTICELLI、SCMI、SODISUD • GAGNERAUD、SPIE BATIGNOLLES、SADE • AS PEINTURE、FRANCHI、PEREZ INDUSTRIE
无论是用于工业、化工厂、发电站、飞机制造厂、造船厂、剧院还是竞技场,在每一个工地和每一个结构上,“原创”都名副其实地称得上是“万能”的。作为立面的作业脚手架和安全脚手架,作为鸟笼、支架和悬挂式脚手架,或作为滚动塔——在任何时候,对于每项工作和要求,都是合适的脚手架。适用于非常困难的地面规划和锚固条件,适用于非常不规则的结构,也适用于安全要求更高的工作。
该研究使用全面的LCA来评估当前脚手架材料(包括高密度聚乙烯(HDPE))和低密度多元素(LDPE)具有的环境影响。它探讨了新材料,例如多羟基独木舟(PHA),通过数据收集和分析评估它们的可行性,并与工业伙伴合作研究了创新的回收和回收方法。本文的结果揭示了LCA,材料挤出物对二氧化碳排放和能源消耗显着贡献。pha被证明是一种有希望的选择,因为它具有更高的成本,但其可再生能源和生物降解性。该研究还确定了一种用于颗粒的回收布的圆形系统,以制造新布料,这是减少二氧化碳排放的最有效策略。此外,研究了绘画公司和农业组织的外部回收塑料材料的机会
摘要:中度至重度大小的肺泡骨缺损的康复通常具有挑战性。当前,使用的治疗方法包括指导骨再生技术与各种骨移植物结合。尽管这些技术得到了广泛应用,但已经报道了几种局限性和并发症,例如发病率,次优的移植/膜补充速率,低结构完整性和尺寸稳定性。因此,具有量身定制特征的仿生支架的发展可能是一种有前途的工具。本文在脚手架的设计和开发中提出了一个关键的考虑,同时还提供了有关这些纳米系统各种制造方法的信息。也将提及它们作为交付系统的利用。
在这里,我们回顾了修复关节软骨的组织工程的最先进。首先,我们描述了内源软骨的分子,细胞和组织学结构和功能,重点是软骨细胞,胶原蛋白,细胞外基质和蛋白聚糖。然后,我们在支架上探索体外细胞培养,讨论维持或获得软骨细胞表型所涉及的困难。接下来,我们讨论用于这些脚手架的各种化合物和设计,包括天然和合成生物材料以及多孔,纤维和多层体系结构。然后,我们报告了不同细胞支架的机械性能,以及在小动物中体内植入后这些脚手架的成功,在结构和功能上类似于天然组织的组织中。最后,我们重点介绍了该领域的未来趋势。我们得出的结论是,尽管过去15年中取得了重大的技术进步,并不断改善动物软骨修复实验的结果,但临床上有用的关节软骨再生的临床有用植入物的发展仍然是一个挑战。
摘要:近年来,Aurones,属于次要类黄酮类的特定多酚化合物并长期忽略了,近年来在药物化学方面引起了显着关注。的确,考虑到它们独特而出色的生物学特性,它们在药物发现环境中脱颖而出,是新型潜在铅化合物的有趣储层。从未有过几种物理化学,药代动力学和药效动力学(P3)问题阻碍了它们在药物发现管道的更高级阶段的进展,因此必要进行铅优化运动。在这种情况下,脚手架跳跃已被证明是优化天然产品的宝贵方法。本综述提供了针对自然和合成过敏的脚手架跳动方法的全面和更新的图片。在文献分析中,特别关注氮和硫类似物。对于每个呈现的类别,总结了一般的合成程序,突出了关键优势和潜在问题。此外,提出了最具代表性的脚手架跳跃化合物的生物学活性,这强调了所取得的改进以及与Aurone类别相比的进一步优化的潜力。
•脚手架抑制剂与蛋白酶抑制剂有所不同:•对NF K B-依赖性肿瘤生长的有效和广泛抑制作用•HST-1021与BTKI或BCL2I结合使用的强大增强的抗肿瘤作用•无TREG DEG DEGETION DEGETION DEGETION
摘要外周神经损伤(PNI)代表了严重的临床和公共卫生问题,因为它的自发恢复较差,自发恢复不良。与自体移植相比,自体移植仍然是诊所中长距离周围神经缺陷的最佳实践,使用基于聚合物的生物降解神经引导导管(NGC)的使用一直在获得动量,替代了指导严重PNI的维修而无需进行次级手术和供体培训和供体的养蜂组织。然而,简单的空心圆柱管几乎不能超过再生效率的自体移植,尤其是在关键尺寸的PNI中。随着组织工程技术和材料科学的快速发展,在过去几十年中,已经出现了各种功能化的NGC来增强神经再生。从脚手架设计方面的方面,特别关注可生物降解的聚合物,本综述旨在通过解决生物材料选择,结构性设计和制造技术的繁重需求来总结NGC的最新进展,从而对生物兼容,范围造成的范围,机械效率和机械效率,工业效率,机械效率,工业效率,工业效率,工业效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,机械效率,释放,效益,机械效率,机械效率,释放效率,工业效率,工业效率,既定效率NGC的神经再生潜力。此外,比较并讨论了几种市售的NGC及其调节途径和临床应用。最后,我们讨论了当前的挑战和未来的方向,试图为理想的NGC的未来设计提供灵感,这些设计可以完全治愈长距离外围神经缺陷。
这项工作得到了韩国粮食,农业和林业技术技术研究所(IPET)的支持,该研究由农业,食品和农村事务部(MAFRA)(MAFRA)(322006-05-02-CG000)和韩国国家研究基金会(NRF)(Nrf Fiff)(MSER FIFF)(MSER FIFF)的高价值的食品技术开发计划(MAS)(322006-05-02-CG0002022R1A2C1008327)。作者贡献(可以发布此字段。)
新组织形成的速率:这意味着,当细胞在自己周围制造自己的ECM时,脚手架能够在体内提供结构完整性,最终它将分解,而将新形成的组织将接管机械负载。