该研究使用全面的LCA来评估当前脚手架材料(包括高密度聚乙烯(HDPE))和低密度多元素(LDPE)具有的环境影响。它探讨了新材料,例如多羟基独木舟(PHA),通过数据收集和分析评估它们的可行性,并与工业伙伴合作研究了创新的回收和回收方法。本文的结果揭示了LCA,材料挤出物对二氧化碳排放和能源消耗显着贡献。pha被证明是一种有希望的选择,因为它具有更高的成本,但其可再生能源和生物降解性。该研究还确定了一种用于颗粒的回收布的圆形系统,以制造新布料,这是减少二氧化碳排放的最有效策略。此外,研究了绘画公司和农业组织的外部回收塑料材料的机会
新组织形成的速率:这意味着,当细胞在自己周围制造自己的ECM时,脚手架能够在体内提供结构完整性,最终它将分解,而将新形成的组织将接管机械负载。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(本版本发布于2024年5月6日。; https://doi.org/10.1101/2024.05.05.03.592484 doi:biorxiv Preprint
我们在这里提出了棕色野兔(Lepus europaeus pallas)的高质量基因组组装,该组件基于来自芬兰东部利珀里(Liperi)的雄性标本的纤维细胞细胞系。这个棕色的野兔基因组代表了芬兰对欧洲参考基因组试验e ort e ort的第一个贡献,以生成欧洲生物多样性的参考基因组。使用HI-C染色体结构捕获方法,使用25倍PACBIO HIFI测序数据组装了基因组,并使用了SCA的旧基因组。在手动策划后,组装的基因组长度为2,930,972,003 bp,N50 sca egs为125.8 MB。93.16%的组装可以分配给25个识别的染色体(23个常染色体加X和Y),与已发布的核型匹配。染色体根据大小编号。基因组基于BUSCO分数(MAM-malia_odb10数据库)具有高度的完整性,完成:96.1%[单副本:93.1%,重复:3.0%],片段为0.8%,缺少2.9%。对细胞系的线粒体基因组进行测序并分别组装。最终注释的基因组具有30,833个基因,其中21,467个多肽代码。棕色野兔基因组特别有趣,因为该物种很容易与北部欧亚大陆物种接触区的山野兔(Lepus timidus L.)杂交,从而产生肥沃的春季,并导致这两个物种之间的基因流。除了为人群研究提供有用的比较外,基因组还可以深入了解一般的毛刺和lagomorpha之间的染色体演化。基因组的染色体组装还表明,细胞系在培养过程中尚未获得核型变化。
医学莱比锡,德国,2024年3月5日 - ISO 13485认证的MedTech公司Bellaseno GmbH使用增材制造技术开发可再吸收的脚手座,今天宣布,汉诺威医学院的一支小组,由汉诺威医学院,诊所外科手术的诊所,由Med. Medic博士领导。Philipp Mommsen成功地使用了Bellaseno生产的定制的,可吸收的骨替换支架,以重建由于创伤性枪伤而导致的三度开放感染裂缝后,径向轴的14 cm节骨缺陷。在汉诺威医学院接受治疗之前,该患者接受了11项手术,并进行了软组织和骨质清理术,以获得次级伤口闭合,而径向骨折仅通过环固定器稳定。在进行了六项进一步手术和全身性抗生素治疗以实现手术领域的细菌性治疗后,在汉诺威医学院使用Bellaseno的可分离脚手架进行了骨骼重建手术,并结合了自体骨移植物,该骨骨移植物的髓质骨骼腔。脚手架基于Rasomer®,这是Evonik开发的可生物降解聚合物平台。手术成功了,三个月后,患者表现出及时的骨整合,并且具有足够的肘部功能,没有任何伤口愈合障碍的迹象。此外,没有更多的感染临床迹象。案例研究发表在本月的个性化医学杂志上。脚手架是由贝拉塞诺(Bellaseno)设计的定制笼子,可与患者的解剖结构完美匹配,并确保在大空隙中安全地固定自动骨移植(RIA材料)。通过在重建手术期间定位动脉静脉环或中央血管椎弓根来实现适当的内部血管化,其中包括某些设计特征,以允许将这种脆弱的结构放置在支架内。脚手架是由Bellaseno的专有AI驱动的增材制造设施以所谓的无触摸方法制造的。由具有基本和锁定部分的内部和外部支撑框架组成的笼子由完全可生物可吸收的,高质量的GMP级Resomer®Polycoprolactone(MPCL)制成,并提供骨导导特性。在手术期间,小组决定使用血管椎弓根来确保立即进行内部血管形成,并固定并固定
摘要:中度至重度大小的肺泡骨缺损的康复通常具有挑战性。当前,使用的治疗方法包括指导骨再生技术与各种骨移植物结合。尽管这些技术得到了广泛应用,但已经报道了几种局限性和并发症,例如发病率,次优的移植/膜补充速率,低结构完整性和尺寸稳定性。因此,具有量身定制特征的仿生支架的发展可能是一种有前途的工具。本文在脚手架的设计和开发中提出了一个关键的考虑,同时还提供了有关这些纳米系统各种制造方法的信息。也将提及它们作为交付系统的利用。
摘要:在学术界和行业中都在做出重大努力,以更好地将锂离子电池电池描述为依赖于从绿色能源存储到电动迁移率增加的应用的技术。锂离子电池中短期和长期体积扩张的测量与多种原因有关。例如,它提供了有关电池和放电周期中电池电池质量和同质性的信息,以及寿命的老化。扩展测量值可用于评估新材料和在细胞生产过程中的终结质量测试的改进。这些测量值还可以通过帮助预测电池的电荷状态和健康状况来表明电池电池的安全性。的扩展测量还可以评估电极和缺陷(例如气体积累和锂电池)的不均匀性。在这篇综述中,我们首先建立了已知的机制,通过这些机制,锂离子电池电池中的短期和长期体积膨胀。然后,我们探讨了触点扩展的接触和非接触量测量的当前最新设备。本评论汇编了现有的文献,概述了旨在通过对单个组件和整个电池电池进行操作的验尸分析来进行现场量扩展测量的各种选项。最后,我们在选择适当的测量技术时讨论了不同的考虑。还考虑了测量设备的成本和所需的空间。选择用于测量电池电池膨胀的最佳方法取决于表征,持续时间,所需分辨率和结果的重复性的目标。
fiffoff_combine.py是我们开发的python脚本,用于输出有关目标组件和参考基因组之间基因截然性的指标。与参考基因组相比,我们将基因共线性定义为靶组件中基因定位之间的对应关系。脚本将输出.gff从升降机和引用.gff文件作为输入。它仅分析基因共线性,因此外显子和成绩单被排除在.GFF文件中。此外,该脚本允许设置一个阈值,以评估目标和参考组件之间相邻基因对之间基因间长度的差异:如果差异低于阈值,则比较的基因组注释是相干的(默认值:500 bp)。
在生理相关的水凝胶中的工程脉管网络是由于细胞– Bioink相互作用以及随后的水凝胶设备接口而成的。在这里,提出了一种新的细胞友好制造策略,以实现支持集成在微流体芯片中的共培养的灌注多凝胶脉管模型。该系统包含两个不同的水凝胶,以特定支持为血管模型选择的两种不同细胞类型的生长和增殖。首先,通过微流体设备内的两光聚合聚合(2pp),通道以明胶的墨水印刷。然后,注入人类肺纤维细胞纤维纤维水凝胶以包围印刷网络。最后,人体内皮细胞被播种在印刷通道内。打印参数和纤维纤维组合物进行了优化,以减少水凝胶肿胀,并确保可以用细胞介质灌注的稳定模型。以两个步骤制造水凝胶结构可确保没有细胞暴露于细胞毒性制造过程,同时仍获得高纤维打印。在这项工作中,在定制制造的灌注系统上成功证明了通过3D印刷的SCA旧和共培养模型的灌注来指导内皮细胞入侵的可能性。