摘要:聚乙烯解构对可重复使用的较小分子受到其烃链的化学惰性的阻碍。热解和相关方法通常需要高温,能量密集型,并产生多种化合物的混合物。在轻度条件下的选择性切割反应() 200°C)是提高化学回收和升级方法的功效的关键。 可以通过在阶梯生长或链生长的合成构建中,可以通过在聚乙烯链中引入低密度的预定断裂点来实现这些。 另外,可以通过脱氢和随访反应或通过氧化对长链二羧酸盐来实现后消费者聚合物聚合的功能化来实现。 在环境条件下通过上述断裂点解构垃圾可以减轻塑料的持久性,作为闭环回收的后备力。200°C)是提高化学回收和升级方法的功效的关键。可以通过在阶梯生长或链生长的合成构建中,可以通过在聚乙烯链中引入低密度的预定断裂点来实现这些。 另外,可以通过脱氢和随访反应或通过氧化对长链二羧酸盐来实现后消费者聚合物聚合的功能化来实现。 在环境条件下通过上述断裂点解构垃圾可以减轻塑料的持久性,作为闭环回收的后备力。。另外,可以通过脱氢和随访反应或通过氧化对长链二羧酸盐来实现后消费者聚合物聚合的功能化来实现。在环境条件下通过上述断裂点解构垃圾可以减轻塑料的持久性,作为闭环回收的后备力。
摘要:等离子体诱导光催化是一种降低传统热分解温度的有效方法,已被用于甲烷脱氢。本文,我们利用时间相关密度泛函理论,通过分子轨道洞察,探讨了等离子体诱导甲烷在四面体 Ag 20 纳米粒子上解离的微观动力学机制。我们巧妙地通过 Hellmann-Feynman 力建立了化学键和分子轨道之间的关系。时间和能量分辨的光载流子分析表明,由于 Ag 纳米粒子和 CH 4 轨道的强杂化,在低激光强度下,从 Ag 纳米粒子到甲烷的间接热空穴转移主导光反应,而间接和直接电荷转移共存,促进甲烷在强激光场中的解离。我们的研究结果可用于设计新型甲烷光催化剂,并强调了分子轨道方法在吸附质-底物体系中的广阔前景。关键词:局域表面等离子体、甲烷脱氢、光载流子动力学、分子轨道洞察、实时时间相关密度泛函理论
抽象线性缩放关系(LSR)和Brønsted - Evans - Polanyi(BEP)或过渡状态缩放(TSS)关系有助于电子能量的预测。然而,温度效应和指数前通常被视为跨金属表面和同源系列的常数。振动缩放关系(VSR)提供了确定此类参数的方法。过渡状态振动缩放关系(TSVSR)在局部最小值和AH X(A = C,N,O)表面扩散的局部最小值状态与BEP关系相关,并扩展到热化学性质缩放。使用密度功能理论(DFT),我们将TSVSR扩展到过渡金属表面上的AH X脱氢反应,将局部最小值的振动模式与过渡状态相关。我们首先通过使用Slater-Koster结构因子并通过晶体轨道重叠种群(COOP)分析(COOP)分析(COOP)分析和能量重叠积分积分来预测TSS关系的斜率。此外,我们发现了通用的热化学性质缩放,从而使熵和温度校正能够估算到同源系列中的焓。我们证明了固有电子屏障低的反应中的显着振动校正,并且在金属和AH X吸附物的简单脱氢反应的固定前差异很大。
摘要:干旱,一个重大的环境挑战,对全球农业和粮食供应的安全构成了重大风险。在响应中,植物可以从环境中感知刺激,并通过各种调制网络激活防御途径以应对压力。干旱耐受性是一种多方面的属性,可以分为不同的促成机制和因素。渗透胁迫,脱水应激,血浆和内体膜功能障碍,细胞呕吐的丧失,代谢物合成的抑制,细胞能消耗,叶绿体功能受损以及氧化应激受损是干旱对植物细胞的最重要后果。了解这些生理和分子反应的复杂相互作用提供了对植物在干旱压力中采用的自适应策略的见解。植物细胞表达了各种机制,可以承受和逆转干旱胁迫的细胞作用。这些机制包括渗透调节以保存细胞张开,脱氢蛋白(例如脱氢蛋白)的合成以及触发抗氧化剂系统以平衡氧化应激。对干旱耐受性的更好理解对于设计特定的方法来提高农作物的弹性并促进水资源有限的环境中的可持续农业实践至关重要。本评论探讨了植物为应对干旱胁迫挑战所采用的生理和分子反应。
能源农场以提高可调度性、电网稳定性和效率 比较电池和其他批量储氢方法在性能和成本方面的改进 探索在需要约 325 吨存储 H 2 的 10 兆瓦可再生能源微电网中的应用 探索在 90-100% 可用性下达到 70% 理论容量系数的潜力 以储氢量、工厂容量系数和工厂可用性为变量进行权衡研究 表征 H18-DBT 对的加氢/脱氢动力学并量化其对
摘要:硼氢化镁(Mg(BH 4 ) 2 )具有较高的氢重量/体积容量和脱氢可逆性,是一种很有前途的材料基储氢材料。目前,缓慢的脱氢动力学和中间体聚硼烷的形成阻碍了它在清洁能源技术中的应用。本研究介绍了一种改变 Mg(BH 4 ) 2 物理化学性质的新方法,该方法涉及在气相中添加反应性分子。该过程使得研究一类用于材料基储氢的新型添加剂分子成为可能。研究了四种具有不同亲电性程度的分子(BBr 3 、Al 2 (CH 3 ) 6 、TiCl 4 和 N 2 H 4 )的影响,以推断如何利用化学反应性来调节添加剂 -Mg(BH 4 ) 2 相互作用并优化低温下氢气的释放。控制添加剂与 Mg(BH 4 ) 2 的接触量可防止 γ -Mg(BH 4 ) 2 晶体结构退化和氢容量损失。三甲基铝对 Mg(BH 4 ) 2 的影响最为显著,可保持 Mg(BH 4 ) 2 理论氢含量的 97%,并在 115 °C 时释放氢。这些结果有力地证明了该方法对控制 Mg(BH 4 ) 2 性能的有效性,并为基于添加剂的储氢材料改性提供了一条新途径。关键词:硼氢化镁、储氢、电解质、添加剂、气相化学、同步辐射■ 引言
肠粘膜免疫系统的基本作用是维持对腔抗原的耐受性,这是通过肠道居住的免疫细胞和由微生物组提供的两向相互作用的大量协调和多层相互作用来实现的。粘膜体液免疫反应(并且主要是分泌IgA)是主机调节分类学组成[1-7]空间组织[8-10]和微生物群的代谢功能[11-13]的主要手段。由共生微生物进行的最重要的母质功能之一是宿主胆汁酸的生物转化(BAS)[14]。BAS是宿主衍生的两亲分子,可作为乳化剂,可促进饮食脂质和脂溶性维生素的溶解和吸收[15]。bas主要使用胆固醇作为前体作为初级碱,然后将其运输并存储在胆囊中,直到后之前将其分泌到十二指肠。大约在分泌到肠道的所有BAS中的95%将在远端回忆[16,17]。在稳态条件下,逃脱这种回收过程的5%的BAS将到达结肠,在那里它们被共生肠道细菌修饰以成为次要BAS。肠道菌群通过不同的酶促反应修饰腔体BA生物化学:deconju-gation,脱氢,脱氢,脱氢,沉积和氧化还原。细菌BA生物转化的第一个限制步骤是甘氨酸或牛磺酸与BAS(deCongugation)的裂解,这是通过细菌胆汁盐羟化酶(BSH)酶进行的。BAS的细菌解偶会阻止BAS通过顶端钠BA转运蛋白(ASBT)的主动转运[18]。人类肠道微生物群的遗传研究表明,所有主要细菌门的成员都具有BSH基因,并且能够进行BA decondongation [19,20]。与脱糖性相反,在企业门的几个含量中(例如,乳酸杆菌科,梭状芽孢杆菌科,乳甲苯性乳甲苯性乳酸菌,浓度)似乎是主要负责的,用于随后的酶促反应[21,22]。此外,肠道菌群可以通过直接影响管腔中共轭BAS的平衡的能力来调节BAS中BAS的合成[23]。疏水性碱基浓度的微摩尔移位可以刺激肠上皮细胞apopto- Sis [24,25],因此BAS的肠肝循环是通过负面反馈机制运行的严格调节过程,该过程通过生理上良性的BA组成和中心含量维持生理上的良性BA组成和中心。最近,BAS被描述为信号分子,它们是核法尼X受体(FXR)和Takeda G蛋白偶联受体(TGR5)的配体[26]。
可充电铝电池(RABS)使用刘易斯酸性铝氯化物(ALCL 3)和1-乙基-3-甲基咪唑烷氯化物(EMIMCL)离子液体电解质。电极制造通常依赖于锂离子电池(LIB)的程序,包括使用聚乙烯二氟化物(PVDF)作为粘合剂。但是,PVDF在RAB电解质中与Al 2 Cl 7-反应,使其不适合新电池类型。文献缺乏有关形成的产品的细节,离子液体电解质的变化以及对电化学性能的影响。在2025年对欧洲化学机构对人类和聚氟烷基物质(PFA)的限制(PFAS)限制为替代性粘合剂。与ALCL 3:EMIMCL(1.50:1.00)电解质,PVDF和PVDC分别在脱氢液化和脱氢氯化过程中转化为无定形碳,如Raman光谱所证实的。此外,通过19 F-NMR,可以证明浸泡聚合物和离子液体之间的反应时间对新形成的新形成的铝氯化铝合症复合物具有显着影响。基于石墨的电极的电化学测试表明,与PVDC相比,PVDF的特定能力增加,并连续数量的周期数。无定形碳可以防止石墨瓦解并增强电导率。此外,新形成的ALF 4-可以运行共同介入并导致特定能力的增加。©2024作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ad8a93]这是根据Creative Commons Attribution 4.0许可(CC by,https://creativecommons.org/licenses/by/4.0/)分发的开放访问文章,如果原始作品被适当地引用了任何媒介,则可以在任何媒介中不受限制地重复使用工作。
作为印度首要工程咨询公司,EIL的角色在塑造国家能源基础设施方面发挥了作用已有近六十年了。 石油和天然气领域的大型项目实施一直是EIL的核心业务。 HPCL的 Vizag炼油厂现代化项目(VRMP),HPCL Rajasthan炼油厂项目(HRRL)具有最高的石化强度,约为25%,IOCL-Panipat,Cauvery Panipat,Cauvery Pasin Refinery(CBR)的CPCL项目的共同资本外表的一定数量均具有20亿美元的Extiriention of Inminen of Inmenta Inmenta Inimengon Iniil的eRiir eyil Iniilgay eyil Iniil of 20亿美元,国内市场。 值得一提的是,HPCL Mittal Energy Limited(HMEL)最大的石化整合项目之一,EIL实施了约30亿美元的资本成本。 在石化领域,EIL也首先实施了丙烷脱氢 -作为印度首要工程咨询公司,EIL的角色在塑造国家能源基础设施方面发挥了作用已有近六十年了。石油和天然气领域的大型项目实施一直是EIL的核心业务。Vizag炼油厂现代化项目(VRMP),HPCL Rajasthan炼油厂项目(HRRL)具有最高的石化强度,约为25%,IOCL-Panipat,Cauvery Panipat,Cauvery Pasin Refinery(CBR)的CPCL项目的共同资本外表的一定数量均具有20亿美元的Extiriention of Inminen of Inmenta Inmenta Inimengon Iniil的eRiir eyil Iniilgay eyil Iniil of 20亿美元,国内市场。值得一提的是,HPCL Mittal Energy Limited(HMEL)最大的石化整合项目之一,EIL实施了约30亿美元的资本成本。在石化领域,EIL也首先实施了丙烷脱氢 -