摘要:需要新的方法来整合化学和物理刺激以控制人工酶反应网络 (ERN) 的动态。在这里,我们提出了一种将光刺激转化为时间程序化 pH 响应的通用方法。我们开发并表征了一组光控脲酶抑制剂。脲酶活性现在由光通过光抑制剂调节,导致尿素水解为氨时 pH 升高。通过仔细选择光的特性以及酶、底物和光抑制剂的浓度,我们可以控制 pH 转变的时间。此外,由于所有酶都具有活性-pH 曲线,因此脲酶光抑制剂系统可用于调节小反应网络中其他酶的活性。
1 https://www.ipcc-nggip.iges.or..jp/public/2019rf/pdf/1_volume1/19r_v1_ch02_ch02_datacollection.pdf 2 https://www.ipcc-nggip.iges.or..jp/public/2019rf/pdf/1_volume1/19r_v1_ch04_methodchoice.pdf 3 https://www.eea.europa.eu/publications/emep-eea-guidebook-2023/part-a-general-guidance-chapters 4 Latest UNFCCC review report: https://unfccc.int/process-and-meetings/transparency-and-报告/报告和重新浏览在范围内/温室气和 - 气候 - iNnex-i-parties/库存 - 评论 - 报告-2022
结果与讨论:ECT 下 N 2 O–N 排放量比环境排放量增加。使用印楝油包衣尿素 (NOCU) 可使 N 2 O–N 排放量减少 10.3%,而与 ECT 下的颗粒尿素处理相比,Limus 包衣尿素可使 N 2 O–N 排放量减少 14%。与 AMB 相比,ECT 处理下小麦土壤的 NH 3 –N 排放量也有所增加。与 ECT 条件下颗粒尿素的 NH 3 –N 排放量相比,通过 Limus 施用 N 可使小麦的 NH 3 –N 排放量减少 35.7–36.8%。温度升高使谷粒重量减少 7.6%。ECT 下,使用颗粒尿素的谷粒氮含量减少 10.9%。与 ECT 相互作用下的尿素相比,NOCU 和 Limus 的施用分别使谷粒氮增加 6% 和 9%。硝化抑制剂和脲酶抑制剂的应用可能会减少未来气候条件下的活性氮损失并提高氮的利用效率。
使用合成化肥,所有养分都处于植物可以占用的化学形式。因此,100%的养分可立即用于植物。如果您使用100磅。13-13-13肥料,全部13磅。 施用氮,磷酸盐和钾的,植物就可以使用它。 无需微生物活性或化学转化即可使营养可用。 这不是完全正确的,因为大多数化肥将尿素(CH 4 N 2 O)作为氮的来源。 在存在水和脲酶的情况下(在植物,细菌,真菌和某些无脊椎动物中发现的酶)消化以产生铵(NH 4 +)和二氧化碳(CO 2)。 植物可以吸收尿素,然后将其分解在植物内。 尿素也被土壤微生物在土壤中分解。13-13-13肥料,全部13磅。,植物就可以使用它。无需微生物活性或化学转化即可使营养可用。这不是完全正确的,因为大多数化肥将尿素(CH 4 N 2 O)作为氮的来源。在存在水和脲酶的情况下(在植物,细菌,真菌和某些无脊椎动物中发现的酶)消化以产生铵(NH 4 +)和二氧化碳(CO 2)。植物可以吸收尿素,然后将其分解在植物内。尿素也被土壤微生物在土壤中分解。
研究人员进行了为期 60 天的土壤实验,研究铜吡唑如何影响土壤铵态氮和硝态氮水平,以及对土壤微生物群落的影响。结果表明,铜吡唑减缓了氮转化中的硝化和反硝化过程。它通过降低脲酶活性和降低土壤中硝化基因(AOB—amoA)和反硝化基因(nirK)的水平来实现这一点。
CRISPR/Cas 能够对包括模型硅藻 Thalassiosira pseudonana 在内的许多不同植物和藻类进行靶向基因组编辑。然而,迄今为止,仅报道了通过同源重组 (HR) 实现的有效基因靶向适用于单倍体生命周期阶段的光合生物。在这里,使用 Golden Gate 克隆组装的 CRISPR/Cas 构建体能够在二倍体光合生物中实现高效的 HR。使用序列特异性 CRISPR/Cas 并与 dsDNA 供体基质配对,在 T. pseudonana 中诱导同源重组,从而用抗性盒 (FCP: NAT) 替换 silacidin、硝酸还原酶和脲酶基因。通过嵌套 PCR 筛选出高达约 85% 的 NAT 抗性 T. pseudonana 菌落对 HR 呈阳性。使用反向 PCR 方法确认了 FCP: NAT 在每个位点的精确整合。硝酸还原酶和尿素酶基因的敲除分别影响了硝酸盐和尿素的生长,而 T. pseudonana 中 silacidin 基因的敲除导致细胞尺寸显著增加,证实了该基因在中心硅藻中调节细胞尺寸的作用。HR 的高效基因靶向使 T. pseudonana 像 Nannochloropsis 和 Physcomitrella 一样易于遗传处理,从而迅速推进了功能性硅藻生物学、生物纳米技术和生物技术应用,这些应用旨在利用硅藻的代谢潜力。
摘要:土壤侵蚀是中国西北部山西省桑迪 - 霍利地区的一个严重问题。由于植被恢复而逐渐改善,但是尚未广泛研究不同植被种植园类型的土壤微生物社区特征。为解决这个问题,我们分析了Caragana Korshinskii Kom。,Populus tomentosa Carr。,Populus Simonii Carr。,Salix Matsudana Matsudana Koid koid koid koid koid koid koid koid koid koid tabulaememememememismis carr中,分析了土壤细菌和真菌社区结构,多样性以及微生物和土壤环境因素。森林。在五种森林类型中,主要的细菌群落组成没有显着差异。细菌和真菌群落的α多样性表明,C. korshinskii森林中的ACE(基于丰度的覆盖量估计量),Chao1和Shannon指数明显高于其他四种森林类型中的ACE(P <0.05)。土壤有机物,总氮和脲酶对细菌群落组成的影响更大,而总氮,β-葡萄糖苷酶和尿素对真菌群落组成的影响更大。在所有森林类型中,有益和致病性微生物的相对丰度相似。基于微生物群落的组成,多样性和土壤肥力,我们将种植园从大多数到最不适合的人工林排名:C。Korshinskii,S。Matsudana,P。Tabulaeformis,P。Tomentosa和P. Simonii。
氮是植物生长的关键元素,可促进植物的生机、光合作用和整体活力。本研究重点是从孟加拉国库尔纳市孙德尔本斯的无瓣海桑根际中分离、鉴定和鉴定固氮细菌,目的是评估它们作为生物肥料的潜力。尽管孙德尔本斯的微生物多样性丰富,但由于培养困难,目前鉴定出的种类不到 5-10%,这限制了对其应用的探索。在本研究中,使用无氮培养基(包括酵母提取物甘露醇琼脂 (YEMA) 和 Burks 培养基)分离固氮细菌,然后进行氨化试验以选择产氨细菌。该过程产生了十种能够产生吲哚-3-乙酸 (IAA) 的固氮细菌分离物。进行了各种生化测试,包括氧化酶、过氧化氢酶、甲基红、吲哚、脲酶、柠檬酸、三糖铁和淀粉水解。这些分离物被命名为 AK1 至 AK10,分别被鉴定为 Rossellomorea sp.、Clostridium sp.、Achromobacter sp.、Pseudomonas sp.、Gluconacetobacter sp.、Scytonema sp.、Pseudomonas sp.、Nesterenkonia sp.、Gluconacetobacter sp. 和 Bacillus sp.。此外,分离物 AK1、AK3、AK4 和 AK10 已通过 16S rRNA 测序得到确认。盆栽试验进一步表明,分离物 AK-1 显著刺激了玉米幼苗的生长和发育。未来需要研究这些细菌分离物对作物产量和种子质量的影响,以更好地确定它们是否适合用作生物肥料。
Luteibacter 属是 Rhodanobacteraceae 科的一部分,属于变形菌门的 γ 亚纲。该科包含 17 个属,分别是 Aerosticca、Ahniella、Aquimonas、Chiayiivirga、Denitratimonas、Dokdonella、Dyella、Frateuria、Fulvimonas、Luteibacter、Oleiagrimonas、Pinirhizobacter、Pseudofulvimonas、Rehaibacterium、Rhodanobacter、Rudaea 和 Tahibacter,其中两个属尚未有效发表(Denitratimonas 和 Pinirhizobacter)[1]。Luteibacter 属由 Johansen 等人 [2] 基于 Luteibacter rhizovicinus DSM 16549 T 种建立。该属目前包含 5 个种,其中 3 个已有效发表:L. rhizovicinus DSM 16549 T [ 2 ]、L. yeojuensis DSM 17673 T [ 3 , 4 ]、L. anthropi CCUG 25036 T [ 4 ],以及 L. jiangsuensis [ 5 ] 和 L. pinisoli [ 6 ]。Luteibacter 属的成员分离自各种环境,例如根际土壤 [ 2 , 6 ]、温室土壤 [ 3 ] 和人体血液 [ 4 ]。它们被描述为具有运动能力的、需氧的革兰氏阴性菌,呈杆状,呈黄色。此外,它们是过氧化氢酶和氧化酶阳性和脲酶阴性的。迄今为止,Luteibacter 或甚至是 Rhodanobacterceae 相关噬菌体都是未知的。噬菌体或细菌噬菌体是感染细菌的病毒。虽然温和噬菌体可以整合到细菌基因组中,但溶菌噬菌体在感染后直接开始繁殖。温和噬菌体会将其整合的基因组与宿主基因组一起复制,从而产生原噬菌体和溶原性细菌。通过添加其遗传物质,原噬菌体可以提供新的能力,保护宿主免受相关和不相关病毒的感染 [ 7 ]。在之前的研究中,我们从位于德国哥廷根的一个富营养化池塘中分离出一种环境 Luteibacter sp. nov. 菌株。分离 Luteibacter 菌株作为预期模型菌株,以研究与细菌感染相关的局部病毒多样性。
为了满足这些营养需求,生产者经常使用尿素和硫酸铵 (AMS) 的物理混合物。虽然物理混合物可能具有施肥者所需的营养量,但一旦撒在田地里,可能会导致营养条纹不均匀。另一种选择可能是均质混合物,包括大分子和次要营养元素,例如氮 (N)、钾 (K) 和硫酸盐-硫 (SO4-S),其中含有适合大多数土壤的最佳数量的这些营养元素。目标考虑到油菜籽与大多数作物相比具有较高的营养需求,2024 年在朗登研究推广中心进行了一项肥料试验。该试验由 UKT 芝加哥赞助。试验的目的是比较两种均质新肥料 NKS(28-0-5-6SO4-S)和 NKS(26-0-7-9SO4-S)与尿素和 AMS 等直接肥料的效果。新型肥料中的氮以铵 (NH4 + ) 和硝酸盐 (NO3 - ) 形式存在,因此与尿素不同,它们不会因氨挥发而损失。该研究采用了三种不同比率的氮、钾和硫酸盐-硫 (SO4-S),并测量了油菜籽的产量和质量。根据土壤有效磷的结果,所有处理统一施用磷。试验地点试验地点位于北达科他州兰登的 NDSU 兰登研究推广中心。处理和重复根据土壤分析结果,所有处理都采用了全比率的磷,即每英亩 72 磅,而采用尿素和 AMS 组合的直接施肥处理(T2、T3 和 T4)没有采用任何钾。但是,这些处理确实采用了等量的氮和等量或接近量的 SO4-S。由于均质肥料 NKS 28 和 NKS 26 中含有钾,因此 T5 至 T10 处理除了氮、磷和 SO4-S 外还添加了钾。此外,在 T2 至 T4 处理中,尿素以 14 毫升/10 磅的比例用脲酶抑制剂处理,所有肥料均以表面撒播的方式施用。肥料和养分类型及数量的详细信息见表 1。