1 西安大学陕西省表面工程与再制造重点实验室,西安 710065 2 西安大学西安植入器械原型与优化重点实验室,西安 710065 3 西安交通大学材料力学行为国家重点实验室,西安 710049 * 电子邮件;liumingxia1121@163.com 收稿日期:2022 年 1 月 6 日/接受日期:2022 年 2 月 22 日/发表日期:2022 年 4 月 5 日 采用超高速激光熔覆-随后的激光重熔(EHLA-LR)在 2Cr13 钢基体上制备镍基涂层。详细研究了激光重熔(LR)处理对超高速激光熔覆(EHLA)涂层的形貌、微观组织、残余应力和耐腐蚀性能的影响。结果表明:EHLA-LR一体化工艺可使涂层表面粗糙度降低86%、表面致密性提高、表面平整度得到优化。EHLA-LR涂层近表面枝晶间距减小,晶粒细化,经LR处理后涂层物相变化不大。结果表明:涂层残余压应力基本保持不变,但经LR处理后残余压应力略有降低。此外,由于LR工艺提高了涂层表面致密性、细化了晶粒,EHLA-LR涂层的耐腐蚀性能优于EHLA涂层。关键词:超高速激光熔覆;激光重熔;微观组织;晶粒细化;残余应力;耐腐蚀性能
沿海核电站的服务水系统使用咸水和经常被污染的水,面临着业内最苛刻的服务环境之一。瑞典公用事业公司 OKG AKTIEBOLAG 在其位于瑞典菲格霍尔姆的奥斯卡港核电站就拥有这种运行环境。服务水系统中使用的咸水和污染的波罗的海水导致原始系统材料大面积腐蚀。自 1978 年以来,材料更换、测试和评估一直在进行,使 OKG 拥有世界上任何核电站中最丰富的 6 Mo 奥氏体不锈钢、钛和其他高性能替代材料运行经验。本案例研究回顾了原始系统材料遇到的问题;替代材料评估程序;以及合金在服务中的实际性能;因此,为具有同样严苛运行环境的公用事业公司提供了宝贵的见解。
沿海核电站的服务水系统使用咸水和经常被污染的水,面临着业内最苛刻的服务环境之一。瑞典公用事业公司 OKG AKTIEBOLAG 在其位于瑞典菲格霍尔姆的奥斯卡港核电站就拥有这种运行环境。服务水系统中使用的咸水和污染的波罗的海水导致原始系统材料大面积腐蚀。自 1978 年以来,材料更换、测试和评估一直在进行,使 OKG 拥有世界上任何核电站中最丰富的 6 Mo 奥氏体不锈钢、钛和其他高性能替代材料运行经验。本案例研究回顾了原始系统材料遇到的问题;替代材料评估程序;以及合金在服务中的实际性能;因此,为具有同样严苛运行环境的公用事业公司提供了宝贵的见解。
3D打印,又称增材制造(AM),自1987年以来得到了迅速发展。与传统制造方法相比,3D打印具有提高材料利用率、减少材料浪费等优势。马氏体时效钢具有良好的强度和韧性,且不损失延展性,已用于3D打印技术。选择性激光熔化(SLM)是3D打印方法之一,主要用于金属和合金粉末。本文将选择性激光熔化用于马氏体时效钢。3D打印马氏体时效钢是一种新材料,关于3D打印马氏体时效钢性能的研究仍在进行中。由于腐蚀成本高,耐腐蚀性是马氏体时效钢最重要的性能之一。因此,本论文将重点研究3D打印马氏体时效钢的腐蚀行为。本论文的目的是找到高耐腐蚀性的最佳热处理条件,并找到马氏体时效钢微观结构与腐蚀行为之间的关系。本文使用了几种具有不同热处理条件的马氏体时效钢样品。 SLM、SLM奥氏体化&淬火、SLM时效、常规奥氏体化&淬火、常规时效。此外,还制备了两种溶液,NaOH(pH=11.5)和Na2SO4(pH=6.5)。使用光学显微镜观察微观结构。SLM和常规样品的晶粒尺寸不同,不同热处理条件的样品的晶粒尺寸也不同。使用动电位极化法测量腐蚀行为。与常规样品相比,SLM样品的电流密度低得多,钝化电位和腐蚀速率相似。但由于缺乏进一步的实验,腐蚀行为之间的关系可能受到多种因素的综合影响。
增材制造 (AM),又称 3D 打印,是一种与铸造和金属加工等传统制造技术相比相对较新的金属材料制造方法。增材制造产品是根据 CAD 绘制的 3D 模型逐层堆叠金属材料而制成的。该技术在生产部件的尺寸上具有极大的自由度,可以制造形状复杂的部件,而这些部件很难或有时无法通过其他方式实现。这有多种好处。增材制造部件的总重量和制造工艺时间可以大大节省。原本由多个较小部件连接而成的部件可以制成一个整体,从而提高生产率并消除连接问题。由于上述原因,过去几十年来,增材制造在许多工业和军事应用领域都很受欢迎 [1,2,3]。然而,直到最近,这项技术才开始引起海洋和造船业的关注。在海事领域利用增材制造优势的努力已经
