镁合金具有生物相容性和可生物降解性,并能促进骨长入,使其成为未来治疗大面积骨缺损时替代自体和同种异体移植的理想候选材料。这些合金的粉末床熔合 - 激光束 (PBF-LB) 增材制造将进一步允许生产针对骨移植进行优化的复杂结构。然而,通过 PBF-LB 加工的结构的腐蚀率仍然太高。更好地了解 PBF-LB 期间产生的微观结构对腐蚀性能的影响被认为是其未来在植入物中应用的关键。在本研究中,研究了 PBF-LB 加工和随后的热等静压 (HIP) 对不同样品方向的微观结构和织构的影响,并将其与 Mg-Y-Nd-Zr 合金的腐蚀行为联系起来。将结果与挤压的 Mg-Y-Nd-Zr 合金进行了比较。与挤压材料相比,PBF-LB 加工材料的二次相数量越多,其局部腐蚀速率就越高。由于二次相的生长,HIP 之后的腐蚀速率进一步增加。此外,在 PBF-LB 材料中观察到了强烈的纹理,而在 HIP 材料中这种纹理也得到了增强。虽然这会影响通过动电位极化测试测得的电化学活性,但在长期质量变化和氢释放测试中,任何纹理效应似乎都被二次相的贡献所掩盖。未来的工作应该进一步研究各个工艺参数对材料微观结构和由此产生的腐蚀行为的影响,以进一步阐明其相互依赖性。
这项研究对海洋环境中金属产品的耐腐蚀性进行了深入的分析,并特别研究了12S-1型抗腐蚀涂层在保护海洋环境中金属中的有效性。在海洋条件下进行了深入讨论不同金属材料的耐腐蚀行为,并通过电化学腐蚀理论确定了随后的仿真实验的理论基础。本文着重于在不同金属材料和涂层或未涂层的12S-1抗腐蚀性涂层的条件下离合器气弹道的腐蚀性能,并使用盐喷雾测试来评估和比较各种处理的腐蚀保护有效性。结果证明,17-4PH材料在没有涂层的情况下仍表现出极好的耐腐蚀性,并且在一定程度上,12S-1抗腐蚀涂层的应用可以增强金属的耐腐蚀性。这项研究不仅为海洋环境中的金属抗腐蚀技术提供了坚实的理论和经验基础,而且还为船舶材料的抗腐败策略优化了重要的指导,并为相关行业的发展提供了实用的参考和方向。关键字:金属产品的耐腐蚀性,盐喷雾测试,12S-1抗腐蚀涂层,17-4 pH材料。1。简介版权所有©2025作者:这是根据Creative Commons Attribution 4.0国际许可(CC BY-NC 4.0)分发的开放访问文章,允许在任何非商业用途的媒介中使用无限制的使用,分发和再现,以提供原始作者和原始作者提供信用。
摘要:使用线材的直接能量沉积 (DED) 工艺被认为是一种可以以可承受的成本生产大型部件的增材制造技术。然而,DED 工艺的高沉积速率通常伴随着较差的表面质量和固有的打印缺陷。这些缺陷会对疲劳耐久性和抗腐蚀疲劳性产生不利影响。本研究的目的是评估相变和打印缺陷对通过线材激光增材制造 (WLAM) 工艺生产的 316L 不锈钢腐蚀疲劳行为的关键影响。为了进行比较,研究了具有规则奥氏体微观结构的标准 AISI 316L 不锈钢作为对应合金。使用 X 射线微断层扫描 (CT) 分析的三维无损方法对打印缺陷的结构评估。通过光学和扫描电子显微镜评估微观结构,而通过循环动电位极化 (CCP) 分析和浸没试验评估一般电化学特性和腐蚀性能。使用旋转疲劳装置检查了在空气和模拟腐蚀环境中的疲劳耐久性。得到的结果清楚地表明,与 AISI 同类合金相比,WLAM 工艺生产的 316L 合金的腐蚀疲劳耐久性较差。这主要与 WLAM 合金的缺点有关,即具有双相微观结构(奥氏体基体和二次 delta-铁素体相)、钝化性降低以及层内孔隙率显著增加,而层内孔隙率是疲劳裂纹的应力增强因素。
随着人们的生活质量的不断提高,近年来能源消耗日益增加。即将到来的全球能源危机引起了全世界的关注。此外,传统燃料的减少会引起能源危机,传统燃料的燃烧会引起温室的影响,这对人们的现有环境产生了重要的威胁。在这种严峻的情况下,多年来的大量研究集中在将相变材料(PCM)纳入建筑材料中,以实现节能和传热增强的目的。1,2将PCM纳入具有稳定形状的建筑材料中,近年来已被广泛考虑。PCM是一种新型的功能材料,通过改变形式并保持温度不变,吸收或释放大量能量。它在建筑能源节能,太阳能利用,热恢复,温度控制,电池热管理和其他ELD的应用方面具有良好的前景。3 - 7根据相变状态,PCM通常分为三类:固体 -