编辑评价 从历史上看,肢端黑色素瘤的研究一直被忽视,因为在欧洲血统的个人中,肢端黑色素瘤占所有黑色素瘤病例的比例很低,这导致该领域存在重要的知识空白,并阻碍了控制该疾病的有效疗法的开发。因此,针对黑色素瘤研究中这一未满足需求的研究非常重要。在这里,何和合作者通过单细胞 RNA 测序分析了六名肢端黑色素瘤患者的八个样本。他们描述了这些肿瘤中的肿瘤微环境,包括对肿瘤微环境中不同细胞类型之间相互作用的描述和潜在的生物标志物。这项研究将有助于我们了解这种类型癌症的免疫浸润,并且是更好地理解这些细胞相互作用如何影响肢端黑色素瘤的发展、进展和治疗反应的重要一步。
日常生活中人类脉搏信号的实时获取对于心血管疾病监测和诊断至关重要。在这里,我们提出了一个智能光子腕带,用于基于斑点模式分析的脉冲信号监测,并使用集成到运动腕带中的聚合物光纤(POF)。评估了几种不同的带有不同核心直径的POF的不同斑点模式处理。结果表明,智能光子腕带具有较高的信噪比和低潜伏期,测量误差约为3.7%。该视觉脉冲信号可用于进一步的医学诊断,并能够客观地监测微妙的脉冲信号变化,例如在凸出之前和之后的Cunkou和Cumpofforms的不同位置的脉冲波形。在人工智能(AI)的协助下,通过处理脉冲信号通过确定的预测模型实现了诸如手势识别之类的功能,在该模型中,识别精度达到95%。我们的AI-ASIST智能光子腕带具有潜在的用于心血管疾病和家庭监测的临床治疗的应用,为支持医疗Internet的智能系统铺平了道路。
摘要 目的:患肢中枢至外周的自主运动努力 (VME) 是驱动中风后运动恢复功能性神经可塑性的主导力量。然而,目前的康复机器人在控制设计中将中枢和外周参与隔离开来,导致康复效果有限。本研究旨在设计一种皮质肌肉相干性 (CMC) 和肌电图 (EMG) 驱动的控制,以整合中风幸存者神经肌肉系统中的中枢和外周 VME。方法:在神经肌肉电刺激 (NMES)-机器人系统中开发了 CMC-EMG 驱动的控制,即 CMC-EMG 驱动的 NMES-机器人系统,以指导和协助中风后患者的腕手伸展和屈曲。使用开发的系统进行了 20 次训练课程的单组试验,以评估对慢性中风 (16 名受试者) 进行腕手练习的可行性。通过临床评估、CMC 和 EMG 激活水平评估康复效果。主要结果。训练期间腕手伸展的 CMC 触发成功率和侧化指数显著增加(p < 0.05)。训练后,通过临床评分和 EMG 激活水平观察到目标腕手关节显著改善,近端肩肘关节补偿受到抑制(p < 0.05)。CMC 值显示上肢 (UE) 肌肉的中央到外周 VME 分布也显著改善(p < 0.05)。意义。开发的系统实现了精确的腕手康复,抑制了对侧半球和近端 UE 的皮质和肌肉补偿,改善了 UE 肌肉上中央和外周 VME 的分布。ClinicalTrials.gov 注册号 NCT02117089
从各个时期提取特征特征(无重叠,例如一分钟)或使用滑动窗口程序从每个时期包含的原始数据中提取统计描述符、傅立叶系数、小波分解或类似内容,以应用统计模式识别技术典型的佩戴时间验证着眼于每个加速度计轴的各个时期的标准偏差和阈值(例如std < 3mg)。较新的方法还考虑了温度。将记录转换为每分钟的活动记录仪计数,通常只在一个轴上(z 轴指向手腕外)。
偏瘫是脑卒中患者的常见后遗症( Wist et al., 2016 ),导致一侧肢体瘫痪,包括运动功能障碍和肢体肌肉无力( Maria and Eng, 2003 ; Li et al., 2013 )。由患者自愿发起的主动治疗比持续被动运动(CPM) ( Takahashi et al., 2008 ) 更有利于神经元恢复,同时,重复、持续的训练可以促进脑卒中患者的功能恢复( Kwakkel et al., 2004 ; Wang et al., 2013 )。由于腕关节对于日常生活活动(activities of daily living, ADLs)至关重要,许多康复系统被提出来辅助腕关节的主动训练( Krebs 等,2007 ;Song 等,2013 ;Abdallah 等,2016 ;Lin 等,2020 )。然而,在偏瘫康复方面,这些系统存在两个不足。首先,这些康复机器人是由偏瘫手臂控制的,这对于急性偏瘫患者来说并不适用,因为他们受损侧的运动功能已经丧失。其次,上述方法忽略了训练过程中肌肉疲劳的发生,存在影响患者主动参与的风险。
这项研究是 BrainGate2 临床试验的一部分,重点研究如何将这些神经信号与机器学习相结合,为患有神经损伤或疾病的人提供外部设备控制的新选择。这位参与者于 2016 年开始与斯坦福大学的研究团队合作,几年后,脊髓损伤导致他无法使用手臂或腿。他有兴趣为这项工作做出贡献,并且对飞行特别感兴趣。
摘要:目的。控制假肢的主要挑战是设备与使用者幻肢之间的通信。我们展示了通过有针对性的经皮神经电刺激 (tTENS) 增强截肢者幻肢感知和改善运动解码的能力。方法。对四名截肢参与者进行了经皮神经刺激实验,以绘制幻肢感知。我们在截肢者接受感官刺激之前和之后测量了幻肢运动过程中的肌电信号。使用脑电图 (EEG) 监测,我们测量了幻肢运动和刺激过程中感觉运动区域的神经活动。对于一名参与者,我们还跟踪了 2 年内的感官映射和 1 年内的运动解码表现。主要结果。结果显示,由于感官刺激,截肢者感知和移动幻肢手的能力有所提高,从而改善了运动解码。在对一名截肢者进行的扩展研究中,我们发现感觉映射在 2 年内保持稳定。值得注意的是,感觉刺激可改善 28 天内的运动解码,而表现在 1 年内保持稳定。从脑电图中,我们观察到感觉运动整合的皮质相关性和由于幻肢感知增强而增加的运动相关神经活动。31 意义。这项研究表明,幻肢感知会影响假肢控制,并且可以从有针对性的神经刺激中受益。这些发现对于改善假肢的可用性和功能具有重要意义,因为幻肢的感觉增强了。34
▪ 为了改善法国的 LGMD 患者护理,AFM-Téléthon LGMD 同伴支持小组 (Groupe d'Intérêt) 在 Léonard Féasson 教授 (圣艾蒂安) 的帮助下,创建了 LGMD 专用的紧急医疗信息表。 ▪ 此表格为急诊科医生和护理人员提供了需要进行紧急护理时的重要信息(心脏或呼吸系统疾病、应避免的药物和手术、骨折时的应对措施等)。 ▪ 患者可以下载表格并填写个人信息(姓名、LGMD 亚型、全科医生等)、疾病特征和病史。它包含在“kit d'urgence” [急救包] 中,有关人员也可以使用,并有助于安抚患者及其家属。
线腕管释放(TCTR)是用于治疗CTS的最小侵入性程序。使用局部麻醉和超声指导,通过韧带周围的两次小点插入线,并用线伸出韧带,以释放中位神经的陷阱。没有切开切口,只使用超声指导将针头和螺纹定位以切割韧带的指导,在手腕和手掌处插入针。该技术旨在减少软组织创伤并实现更快的恢复时间。TCTR的潜在挑战之一是难以使手和手腕内的基本解剖结构可视化,这可能会导致对组织和神经的意外损害。当前的研究表明,使用超声引导图像执行此程序需要练习,因为临床医生有学习曲线。
