背景 .由于晚期宫颈癌的治疗手段不具特异性以及缺乏分子靶向药物,晚期宫颈癌的治疗仍具有较大的挑战性,寻找新的宫颈癌治疗生物标志物十分必要。方法 .本研究通过转染携带KIN17 siRNA的重组慢病毒载体,构建kin17敲低的宫颈细胞株HeLa和SiHa,并用嘌呤霉素进行筛选。通过荧光观察和蛋白质印迹法检测建立的kin17敲低细胞。流式细胞术检测细胞凋亡和线粒体膜电位(MMP)。分光光度法检测caspase 3酶活性。蛋白质印迹法分析凋亡相关蛋白的表达谱。最后,我们利用生物信息学和蛋白质组学数据分析宫颈癌中的KIN相关基因。结果 .结果显示,转染基因沉默载体的HeLa和SiHa细胞中kin17的荧光阳性率较高(> 90%),基因沉默效率较高(> 65%)。此外,kin17的缺失分别使HeLa和SiHa细胞的MMP降低和凋亡率增加。此外,敲低kin17可以增强HeLa和SiHa细胞中caspase 3酶活性,增加裂解PARP和Bim的表达,同时降低Bcl-xL和磷酸化BAD的表达。宫颈癌KIN相关预后基因的鉴定显示,共构建了5个基因(FZR1、IMPDH1、GPKOW、XPA和DDX39A)用于该风险评分,结果显示CTLA4表达与风险评分呈负相关。结论。我们的研究结果表明,kin17 敲低可通过靶向 caspase 3、PARP 和 Bcl-2 家族蛋白促进宫颈癌细胞凋亡。此外,kin17 可以通过线粒体途径调控癌细胞凋亡,可作为调节宫颈癌细胞凋亡的新型治疗靶点。
摘要 多发性骨髓瘤是一种无法治愈的浆细胞恶性肿瘤,5 年生存率仅为 53%。迫切需要找到新的多发性骨髓瘤弱点和治疗途径。在此,我们确定并探索了一个新的多发性骨髓瘤靶点:脂肪酸结合蛋白 (FABP) 家族。在我们的工作中,用 FABP 抑制剂 (BMS3094013 和 SBFI- 26) 治疗骨髓瘤细胞,并在体内和体外检查细胞周期状态、增殖、细胞凋亡、线粒体膜电位、细胞代谢(耗氧率和脂肪酸氧化)和 DNA 甲基化特性。还使用 RNA 测序 (RNA-Seq) 和蛋白质组学分析评估了骨髓瘤细胞对 BMS309403、SBFI-26 或两者的反应,并通过蛋白质印迹和 qRT-PCR 确认。使用癌症依赖性图 (DepMap) 评估骨髓瘤细胞对 FABP 的依赖性。最后,挖掘了 MM 患者数据集 (CoMMpass 和 GEO) 中 FABP 表达与临床结果的相关性。我们发现,用 FABPi 或 FABP5 敲除 (通过 CRISPR/Cas9 编辑生成) 处理的骨髓瘤细胞在体外表现出增殖减少、凋亡增加和代谢变化。FABPi 在两种临床前 MM 小鼠模型中的体内结果好坏参半,这表明在临床应用之前需要优化体内递送、剂量或 FABP 抑制剂的类型。FABPi 在体外对线粒体呼吸产生负面影响,并降低 MM 细胞中 MYC 和其他关键信号通路的表达。临床数据显示,肿瘤细胞中 FABP5 表达高的患者总体生存率和无进展生存率较差。总体而言,这项研究将 FABP 家族确立为多发性骨髓瘤的潜在新靶点。在 MM 细胞中,FABP 具有多种作用和细胞作用,从而支持骨髓瘤进展。有必要对 MM 中的 FABP 家族进行进一步研究,尤其是对体内靶向这些家族的有效转化。
神经传递:神经递质、通道和转运蛋白简介 Blanton 幻灯片 1(标题幻灯片 1):下午好,您可能还记得,上一节课我讲了非甾体抗炎药,但以防万一,请允许我重新介绍一下自己,我叫 Michael Blanton,是药理学和神经科学系的教授。今天,我将对神经传递进行一般性介绍,重点介绍通道和转运蛋白的多样性、结构和功能。在接下来的一个小时里,Josh Lawrence 博士将对神经传递进行回顾,重点介绍膜电位、动作电位以及突触可塑性。我将介绍的材料在 Purves 神经科学教科书(神经科学第 5 版,Dale Purves 等人,2012 年)的第 4 章和第 6 章中介绍,事实上,我将使用的大多数幻灯片都直接来自教科书。话虽如此,您可能还记得我的 NSAID 讲座,我已经写下了我的讲稿,这应该可以在 Sakai 上找到。因此,要学习我的材料,我会先阅读神经科学教科书中的两章,然后将大部分时间集中在我的 ppt 和讲稿上。通道和转运蛋白当然是神经生理学和突触传递的关键因素,大多数中枢神经系统药物都针对这些蛋白质。但是,让我尝试通过一个例子来说明为什么我认为让您充分了解这些参与者如此重要:幻灯片 2:GABA ARA 氯离子传导配体门控离子通道:γ-氨基丁酸或 GABA 是中枢神经系统的主要抑制性神经递质,而 GABA A 受体是许多重要药物的主要靶点 - 示例 1:当我在下一个小时给您讲授全身麻醉药时,一致的看法是,全身麻醉药(丙泊酚、异氟烷、依托咪酯等)的大部分效果是通过它们对 GABA AR 的作用介导的,GABA AR 是一种氯离子传导配体门控离子通道。氯离子进入神经元的运动使膜超极化,使兴奋电流更难导致动作电位;
微分子和大分子进入细胞和在细胞内的运动显著地控制着它们的一些药代动力学和药效学参数,从而调节细胞对外源性和内源性刺激的反应。各种药剂和其他生物活性分子在细胞内和整个细胞内的运输对于细胞的保真度是必要的,但对此研究甚少。对抗癌症和微生物感染的新策略需要更深入地了解膜和亚细胞运输途径,并从本质上调节抗菌和抗癌药物耐药性的引发和传播的几个方面。此外,为了获得最大可能的生物利用度和治疗效果并限制药理生物活性物质的有害毒性,有时需要用靶向配体对其进行功能化,以调节亚细胞运输并增强定位。近来,药物靶向方案主要集中在靶向组织成分和细胞附近,然而,膜和亚细胞运输系统将分子引导到合理位置。递送平台的有效性在很大程度上取决于其物理化学性质、细胞内屏障和药物的生物分布、药代动力学和药效学范式。大多数亚细胞器都具有一些特殊的特性,可以通过这些特性来操纵膜和亚细胞靶向,例如线粒体中的负跨膜电位、溶酶体中的腔内 delta pH 等。存在许多专门的方法,它们可以积极促进亚细胞靶向并限制生物活性分子的脱靶。载体分子设计方面的最新进展使得能够处理膜运输,从而促进活性化合物向亚细胞定位的递送。本综述旨在涵盖促进活性分子运送到亚细胞位置的膜运输途径、亚细胞药物运送系统的相关途径以及载体系统在药物运送技术中的作用。
在Zantoxylum属中发现的几种生物碱已显示出显着的抗癌活性。然而,以前尚未报道乙氧基氯抗菌(ETH)的抗肿瘤作用。细胞活力,菌落形成,凋亡和细胞周期分析,细胞内和活性氧(ROS),线粒体膜电位(MMP)对SW480细胞的ETH水平。皮下移植的SW480细胞模型用于确定ETH对体内肿瘤生长的影响。炎症水平,血管生成因子,病理观察,定量反向转录PCR(QRT-PCR),定量蛋白质组学,代谢物概况和蛋白质印迹。它发现ETH在体外显着抑制了SW480和HT29细胞的增殖,对SW480细胞的抑制作用更强。因此,随后的研究集中在SW480细胞上。在体外,我们观察到ETH在G0/G1期停滞了细胞周期,MMP水平降低,细胞ROS水平升高和诱导的线粒体凋亡。体外,ETH显着抑制了肿瘤的增殖和转移,并调节血清中血管生成和炎症因子的分子水平,以及肿瘤组织中的凋亡蛋白。血清蛋白质组学表明,差异蛋白主要参与PI3K/ AKT/ MTOR途径,包括层粘连蛋白β1(LAMB1)和I型胶原蛋白(COL1A1)。代谢组学表明,在ETH干预后,显然,由PI3K/AKT/MTOR途径调节的许多异常水平的代谢产物显然会逆转正常水平。两组之间的相关性分析表明,PI3K/AKT途径中的不同蛋白,尤其是乳酸脱氢酶B(LDHB)和谷胱甘肽合成酶(GSS)可以与大多数不同的代谢物相互作用。总而言之,ETH通过抑制PI3K/AKT/MTOR途径的激活来发挥抗肿瘤作用,从而激活线粒体凋亡。ETH在未来缓解结肠癌患者的药物开发中可能会考虑。
TMBP在L-929细胞受UVB辐射作用下的作用机制研究。 Clara Fernandes Torre(PIBIC/CNPq/FA/UEM)、Bruna Terra Alves da Silva、Sueli de Oliveira Silva Lautenschlager(顾问)。电子邮件:lautenschlager@uem.br。波多黎各马林加州立大学健康科学中心。知识领域和子领域:药学/生药学 关键词:光保护; UVB辐射;抗氧化剂。摘要 紫外线B(UVB)辐射由于其高能量,可穿透表皮,造成直接的DNA损伤并通过产生活性氧(ROS)造成间接损伤。抗氧化物质,如3,3',5,5'-四甲氧基联苯-4,4'-二醇(TMBP),有助于维持细胞氧化还原平衡。目的是研究 TMBP 治疗对受到 UVB 辐射的 L-929 成纤维细胞的影响。评估了线粒体膜电位、脂质过氧化、DNA碎片和细胞膜完整性。 TMBP 显示出体外功效并且可能具有光保护方面的前景。简介 皮肤是一道保护屏障,直接暴露于太阳辐射的有害影响,根据其传播特性和生物效应,太阳辐射包括三个波段:UVC、UVB 和 UVA。尽管 UVC 是一种强效的致突变剂,但由于被臭氧层吸收,它无法到达地球表面。 UVB 和 UVA 辐射到达地球并造成皮肤损害(SOLANO,2020 年)。 UVB由于能量高,可穿透表皮,对DNA造成直接损伤,并通过产生ROS造成间接损伤。 ROS 在细胞功能中发挥着至关重要的作用,但当 ROS 产生过量或抗氧化剂减少时,就会产生危害,从而导致氧化应激。抗氧化剂对于皮肤健康至关重要,因为它们可以中和活性氧 (ROS) 并防止氧化应激 (G Ę GOTEK, 2020)。 TMBP 在无细胞试验中表现出了抗氧化潜力,表明它是一种很有前途的防晒化合物。我们的目标
背景:肝细胞癌(HCC)是癌症相关死亡的主要原因之一。Sorafenib是该疾病的一线疗法,与降低的治疗功效有关,可以通过与selumetinib结合来克服这种疗效。在这种情况下,这项工作的主要目标是开发一个新的纳米系统,该系统由含有靶向配体GalNAC的脂质双层涂层的聚合物核心组成,以专门有效地将两种药物分配到HCC细胞中,以显着提高其治疗效率。方法:混合纳米系统(HNP)的物理化学表征及其成分是通过动态光散射,ZETA电位,基质辅助激光解吸电离的电离 - 飞行质量光谱的时间 - 飞行质量光谱的时间和透射电子微观。细胞结合,摄取和HNP的特异性通过流式细胞和共聚焦显微镜评估。通过Alamar Blue Assay评估了治疗活性:通过:细胞活力;使用FITC-ANNEXIN V通过流式细胞术进行细胞死亡;胱天蛋白酶活性通过发光;通过流式细胞仪的线粒体膜电位;通过蛋白质印迹和分子靶水平。结果:获得的数据表明,这些混合纳米系统具有两种药物的较高稳定性和载荷能力,以及合适的理化特性,即在大小和表面电荷方面。此外,生成的制剂允许绕过耐药性并具有高特异性,从而促进了HCC细胞中的大细胞死亡水平,但不能在非肿瘤细胞中。通过增加的编程细胞死亡来实现共同载体药物的抗肿瘤作用的增强,这与线粒体膜电位的强烈降低相关,caspase 3/7和caspase 9的活性显着增加,并大量增加附属蛋白V-v-p-p-p-p-p-py-py-py-PORSISTIS的细胞。结论:开发的配方产生了较高且协同的抗肿瘤作用,揭示了改善针对HCC治疗方法的转化潜力。关键字:肝细胞癌,混合纳米系统,药物输送,Galnac,Sorafenib,Selumetinib
[收到2023年5月2日; 2023年6月6日修订; 2023年6月7日接受的摘要:越来越多的证据表明超极化激活阳离子(HCN)通道在控制静息膜电位,起搏器活动,记忆形成,睡眠和唤醒中的作用。它们的失功可能与癫痫和与年龄相关的记忆下降的发展有关。神经元过度兴奋性参与癫痫生成和脑电图的去同步在人类阿尔茨海默氏病(AD)和动物模型的痴呆症过程中发生,但这些作用的基本离子和细胞机制尚不广泛地理解。有些人建议在包括AD在内的神经发生疾病过程中,参与记忆形成的theta节奏可以用作记忆障碍的标志。本综述重点介绍了超极化HCN通道,theta振荡,记忆形成及其在痴呆症(包括AD)中的作用之间的相互作用。虽然单独使用,但这些因素中的每个因素都与强有力的支持证据相互联系,但我们希望在这里将这种联系扩展到更具包容性的情况。因此,HCN通道可以为开发用于预防和/或治疗痴呆的新治疗剂提供分子靶标。关键词:阿尔茨海默氏病,痴呆症,拉莫三嗪,HCN通道,IH电流,theta振荡,记忆,EEG,EEG引言此评论研究了神经元兴奋性的超极化激活阳离子(HCN)通道的功能,EEG Theta theta theta band band Syncronication和Memory Cormination and Memory Cormitation和Memory cormatient。HCN通道会在许多类型的神经元中产生超极化激活的阳离子电流(I H)。它最近对HCN依赖性内阳离子当前生理学的干扰及其对痴呆症可能发育的贡献,例如阿尔茨海默氏病(AD)的贡献。最近的证据表明我参与了
我们引入神经网络作为人工智能模型之一。神经网络是生物神经细胞回路中进行的信息处理的模型。神经细胞由称为细胞体的主体、从细胞体延伸出来的树突和连接到其他细胞的轴突组成。轴突的末端附着在其他神经细胞的树突上,轴突与其他神经细胞的连接处称为突触。树突接收来自其他细胞和感觉细胞的输入信号,信号在细胞体内进行处理,并通过轴突和突触将输出信号发送给其他神经元(图2(a))。 据称大脑中的神经元数量约为 10^10 到 10^11。通过结合这些细胞,每个神经元以并行和分布式的方式处理信息,从而产生非常复杂和先进的处理。一个细胞的输出通过突触传递到其他细胞,通过轴突可以分支成数十到数百个神经元。单个细胞具有的突触连接数量从数百个到数万个不等。所有这些突触连接都有助于神经元之间的信号传输。 当一个信号从另一个神经细胞到达一个神经细胞时,膜电位会因信号而发生变化,当信号超过一定的阈值时,电位就变为正值,神经细胞就会兴奋。然后它向其他神经元发送信号。无论输入值如何,该图的形状几乎都是相同的波形,一旦超过阈值,就会产生恒定形状和幅度的电脉冲。因此人们认为,神经网络中承载信息的不是电脉冲的波形,而是电脉冲的频率(图2(b))。 细胞体的阈值函数,当输入高于阈值时,发出电脉冲,当输入低于阈值时,不发出电脉冲,具有从输入到输出的非线性转换效果。此外,还有兴奋性突触,它会释放使输入神经细胞更容易兴奋的递质,还有抑制性突触,它会使输入神经细胞更不容易兴奋。接收输入神经元可以被认为是接收来自每个输出神经元的输入的总和。 神经网络的数学模型源于对神经元的观察。 1943年,McCullough和Pitts提出了正式的神经元模型。图 2(c)中的圆圈表示一个神经元的模型。 xk 取值 0 和 1,表示该神经元接收的突触数量。
接触依赖性生长抑制 (CDI) 是一种由 CdiA 效应蛋白介导的广泛存在的细菌间竞争形式。CdiA 存在于抑制剂细胞表面,并在接触时将其有毒的 C 末端区域 (CdiA-CT) 传递到邻近的细菌中。抑制剂细胞还会产生 CdiI 免疫蛋白,这些蛋白可中和 CdiA-CT 毒素以防止自我抑制。在这里,我们描述了一组不同的 CDI 离子载体毒素,它们会消散目标细菌中的跨膜电位。这些 CdiA-CT 毒素由基于 AlphaFold2 建模的两个不同域组成。C 末端离子载体域都预测会形成能够跨越细胞膜的五螺旋束。N 末端“进入”域的结构各不相同,似乎劫持了不同的整合膜蛋白,以促进毒素组装到脂质双层中。大肠杆菌分离株部署的 CDI 离子载体根据其进入域结构分为六大类。比较序列分析鉴定出第 1 组和第 3 组(AcrB)、第 2 组(SecY)和第 4 组(YciB)的离子载体毒素受体蛋白。利用正向遗传学方法,我们鉴定出第 5 组和第 6 组离子载体的新受体。第 5 组利用由 puuP 和 plaP 编码的同源腐胺输入蛋白,第 6 组毒素识别由旁系同源 dtpA 和 dtpB 基因编码的二肽/三肽转运蛋白。最后,我们发现离子载体结构域表现出显著的组内序列变异,特别是在预测与 CdiI 相互作用的位置。因此,相应的免疫蛋白也具有高度多态性,通常与同一组的成员仅共享约 30% 的序列同一性。竞争实验证实,免疫蛋白对其同源离子载体具有特异性,无法抵御来自同一组的其他毒素。这种蛋白质相互作用网络的特异性为大肠杆菌分离株之间的自体/非自体识别提供了一种机制。