培养肉,也称为人工培育肉或实验室生长肉,旨在通过体外细胞培养而非传统的牲畜屠宰来生产肉类[1,2]。作为一种新兴的细胞农业技术,生产培养肉的本质是基于动物组织再生机制构建肌肉组织。因此,各种组织工程技术已应用于培养肉[3−5]。尽管有许多发展,但不难发现它们可以分为两类,这也是培养肉的两个典型难点。一类侧重于促进肌肉细胞分化,这可以通过纹理/图案化的表面或空间限制来帮助实现。另一种致力于通过自上而下或自下而上的方法构建三维(3D)组织结构。与直接制造3D结构的自上而下方法不同,自下而上的策略是首先生成构建块,然后将其组装起来以实现大规模构建。基于这些理解,我们将从纹理支架、3D 生物打印、成型、图案化和细胞片工程等分类概述培养肉的前沿组织工程策略。在讨论工程方法时,还将介绍应用材料。最后,我们将讨论该领域的未来前景和挑战。
摘要在将上循环描述为将一组现有 /二手材料安装到新设计中的问题时,本文利用遗传算法(GA)和树叉在有限的材料清单中锻炼设计。它提出了一种自下而上的生成方法,旨在通过降低材料选择性来增加上循环的适用性。纸张介绍了两种情况:第一个基于树叉从一棵树中采购的树叉,第二个利用废物材料,即从森林地面收集的树叉。IT研究了从较早设计阶段的材料尺寸和制造约束的气体,以扩大这些元素的形态参与并创建自下而上的生成系统。该论文在没有事先选择的情况下利用废料,而不会改变或变形其独特的几何形状以最大程度地减少制造能耗。它提出了由十个叉子制成的制作的桌子结构。关键字树叉,遗传算法,生成设计,最大程度地减少废物,可持续性,材料上循环,物质可用性的设计,循环经济1.简介
综合模型中的行为是研究人员之间的争论点[6]。这场辩论强调了计算模型中的多种方法,通常以“自下而上”和“自上而下”的方式来表征。自下而上的建模强调了大脑中发生的详细生物学过程的模拟[4,5]。模型参数主要由现有的生物学数据告知,其目的是为功能能力提供明显的约束,这些功能能力被假定自发出现[4,6]。自上而下的建模从功能能力明确开始。传统上是从识别大脑结构的功能,然后开发出实现这些功能的神经计算算法。近年来,这种假设驱动的方法已补充了目标驱动的深度学习[7]。这种启用的动力智能方法旨在生成通过参数优化实现大脑功能的神经计算算法,以便模型可以解决生态有效的任务[8]。自上而下的模型旨在通过模拟大脑的总体原理来实现脑样功能,而无需模拟其生物学细节。为了对这些方法进行深入评论,我们将有兴趣的读者推荐给[5-9]。
2023 年 3 月 13 日至 14 日,在蒙巴萨 PRIDEINN PARADISE 海滩度假村举行的县级宣传研讨会上,国家财政和经济规划部长 NJUGUNA NDUNG'U 发表了主旨演讲,主题是将 2023-2027 年县级综合发展计划 (CIDP) 与自下而上的经济转型 (BETA) 和中期计划 IV 2023-2027 相结合。
“长期成功需要采用协作方式进行治理。创新区的工作道德和文化是“合作竞争”。自下而上的横向治理模式——涉及企业、学术和民间机构、政府、工人和居民——可以最好地协调必须集体完成的工作:识别资产;设计、财务和战略举措;公共空间管理;以及评估进展。”
此DPP基于一项提案,基于涉及一项调查的自下而上的研究方法,或来自欧洲近20个国家的纺织领域的81个利益相关者和专家。这项研究是由欧洲议会的科学技术选择评估(Stoa)小组进行的。在短期视野2027上用于纺织品的“最小和简化的DPP”版本主要包括强制性信息和其他信息,可用于生命周期分析。
人体组织(例如肌肉、血管、肌腱/韧带和神经)具有纤维状束状形态,束内细胞和细胞外基质 (ECM) 以特定的 3D 方式有序排列,协调细胞和 ECM 发挥组织功能。通过利用新兴的“自下而上”生物制造技术将细胞纤维(含有活细胞的纤维)设计为活体构件,现在可以在体外重建/再造纤维状束状形态及其时空特定的细胞-细胞/细胞-ECM 相互作用,从而实现这些纤维组织的建模、治疗或修复。本文简要回顾了可用于制造细胞纤维的“自下而上”生物制造技术和材料,重点介绍了能够有效、高效地生产细细胞纤维的静电纺丝技术,以及通过适当设计的工艺,模拟天然纤维组织的 3D 细胞载运结构。强调了细胞纤维作为药物测试、细胞治疗和组织工程等领域的模型、治疗平台或组织类似物/替代品的重要性和应用。讨论了在高级层次结构和天然组织复杂动态细胞微环境的仿生学方面面临的挑战,以及细胞纤维在众多生物医学应用中的机会。
由自然界观察到的小亚基的层次自我调节聚集的启发,为组件的自下而上的组装提供了一种策略,可以通过离散构件的自发组合来构建二维或三维吸引人的生物模仿材料。在此,我们报告了超声波能量辅助,快速,二维和三维中尺度的井井有序的微生物构建块(大小为100μm)的方法。在倒入水滴的水上界面上的机械振动能量驱动的自组装,并在动态探索了图案化结构的实时形成过程。40 kHz超声波被转移到悬浮在水环境中的微板岩中,以驱动预先设计的良好结构的自我组装。在水相内的微血小板的二维自组装具有较大的图案区域。稳定的三维多层自组装结构在空气水接口上很快形成。这些演示旨在为具有自主组织策略的新的二维表面涂料技术开放独特而有效的方法,以及由自下而上方法和自然界中常见的三维复杂层次结构(例如Nacre,Bone或bone或Enamel等)建立的三维复杂层次结构。)。