a)生成集合控制模块DSE6120功能:✓使用该模块来监视备用生成集合集的主要供应,启动和停止✓基于微处理的基于微处理器的设计✓自动控制主和发电机接触器✓监控发动机性能和AC功率输出的电源输出量的LED警报指示✓不用构造的数字距离距离距离4个数字距离4件数字距离4件数字✓4 6可配置的直流输出✓简单的按钮控制停止 /重置 - 手动 - 自动 - 测试 - 启动b)通过LCD显示显示:✓发电机伏特(L -L / L -N)发电机KVA✓发动机机油压力(PSI -BAR)发电机KW期生成器kW时间(L1,L2,L2,L2,L2,L2,L2,L2,L2,L3)生成器(L2,L3)生成器(L2,L3)生成器(L2,L3)生成器(fentorator cos(L2)生成器(fentorator cos(L2,L3)) ✓工厂电池电压✓发动机小时✓电压伏(ph-ph/ph-n)
Nils R. Sandell Jr. 博士主席独立顾问专业知识指挥与控制;通信;制导、导航与控制;信息融合与管理;ISR、跟踪与识别;低可观测性;建模、仿真与分析;科技管理;系统工程 经验 独立顾问 2016 年至今 国防高级研究计划局战略技术办公室主任,2013 年 - 2016 年 独立顾问 2010 年 - 2013 年 BAE 系统公司先进信息技术副总裁,2004 年 - 2010 年 ALPHATECH INC. 总裁兼首席执行官,1979 年 - 2004 年 麻省理工学院 电气工程和计算机科学副教授,1976 年 - 1979 年 电气工程和计算机科学助理教授,1974 年 - 1976 年 教育 麻省理工学院 电气工程博士 电气工程硕士 明尼苏达大学 电气工程学士 荣誉 美国自动控制委员会 Donald P. Eckman 奖 美国空军指挥官公共服务奖 美国国防部杰出公共服务奖 Eta Kapa Nu;Tau Beta Pi
目前,无论是民用还是军用飞机,几乎都配备某种形式的自动飞行控制系统,作为其标准操作设备的一部分。可用的系统与飞机本身一样多种多样,从单引擎私人飞机上的简单侧倾稳定器或“机翼调平器”,到能够自动控制大型运输飞机从起飞到着陆和滑跑的飞行路线的复杂飞行引导系统。因此,可能有点难以意识到,此类系统的开发源自人类在飞上天空并成为自己“飞行路线命运”的控制者之前多年奠定的基础。当然,早期“重于空气的飞行器”的发明者面临着许多问题,其中最突出的是与实现稳定飞行相关的问题。尽管人们意识到稳定性应该是机器基本设计中固有的,但人们对将稳定性分为动态和静态元素以及机器所具有的各种自由度知之甚少。因此,正如历史记录所表明的那样,人们更加努力地保持机器的直线和水平,不受外部干扰的影响,并通过应用某种形式的人工稳定装置来获得必要的稳定性。值得注意的是,可能第一个
摘要 航天器自主制导导航与控制 (GNC) 涵盖了全新的 GNC 策略,包括机载健康监测能力、决策算法和用于重新配置的长期策略。其关键特征是设计不太稳健、部件更具适应性和/或学习性的新概念。这一概念在设计阶段的成本将大大降低,并且在发生故障时更安全。 在其研究活动框架内,阿丽亚娜集团多年来一直在研究 GNC 的智能方法。人工智能和机器学习应用的最新进展扩大了 GNC 机会的范围。在本文中,我们专注于开发性能优于使用经典反馈控制技术合成的控制器的增强型控制器。一项技术调查将我们的研究导向通过强化学习技术训练的非线性控制神经网络结构。将这些技术应用于一个简单但具有代表性的发射器上级控制工业研究案例,可以深入了解该方法,并为结合人工智能和自动控制开辟有趣的前景。
1电气工程,自动控制和信息学的学院,奥波尔技术大学,波兰45-758; natalia.browarska@gmail.com(n.b。); m.pelc@greenwich.ac.uk(M.P.); j.zygarlicki@po.edu.pl(J.Z.)2巴比伦大学工程学院生物医学工程系,伊拉克巴比伦51001; amir.albakri80@gmail.com 3伦敦格林威治大学的计算与信息系统系,英国伦敦SE10 9LS,4 408 00 008 00 008 00 008 00 00 00 008 00 008 00 008 00 008 00 008 00 0008 00 00 00 008 00 00 00 008 00 008 00 00 00 00 00 00 00 Michaela.sidikova@vsb.cz(M.S.); radek.martinek@vsb.cz(R.M.)5生物医学科学和医学信息学理论系,尼古拉斯·哥白尼大学,Collegium Medicum,85-067 Bydgoszcz,波兰; medsystem@medsystem.com.pl 6 Kazimierz Wielki大学哲学研究所,85-092 Bydgoszcz,波兰7 Babinski专业精神病医疗中心,门诊成瘾治疗,91-229 Lodz,Poland 8 The Poland 8 The Polarditation for-Polandicity sectrantional sectrantional sectrantional secdrantional secdrantional secdrantional secdrantional secdrantional secded secadected secustrance convertion secunders“ kawala84@gmail.com
摘要 - 在Malang Regency的Sumbermanjing区的Tambakrejo村照明公共道路的风力发电机,以最大程度地减少交通事故水平。该发电厂利用风力资源来驱动将产生电能的风力涡轮机发电机。使用风能成为电能的使用是由垂直螺旋萨维尼型风力涡轮机设计的,作为接收风阵的介质,该媒介会驱动发电机产生电能。此螺旋savonius风力涡轮机的优势可以容纳所有基本方向,因为它具有2个旋转180的叶片。电池的作用是在将电能分发以进行公共街道照明之前存储。风力涡轮机或风电厂是可再生能源的一种环保能源之一,目前正开始广泛开发。在存储和使用这种电能时,非常有必要注意,以免收费 /过度充电和过量使用 /过度发电。因此,使用电荷控制器电池充电设置,该设置将调节充电或放电。从电池中,它将连接到光电电池,以进行自动控制,并在灯光变暗时打开
摘要:实现区域供热网络热需求灵活性的低碳方案包括智能家居技术 (SHT),该技术可以通过响应公用事业信号并考虑家庭偏好来自动控制供热。本研究通过实证研究了居住者在供暖实践中如何使用 SHT 控制空间供暖。该研究基于对丹麦智能家居居住者的深入访谈和家庭参观。结果表明,(1) 实践知识、(2) 控制观念和 (3) 日常生活的时间方面对于居住者如何使用 SHT 控制空间供暖特别重要。此外,结果还显示了居住者在失控时的行为。数据表明,使用 SHT 控制空间供暖的方式多种多样,显示了家庭的物质性、居住者所依赖的实践知识的重要性以及他们赋予“家常”实践的意义之间的动态关系。由于 SHT 依赖自动化功能限制了人们积极参与控制空间供暖,本文提出的研究结果强调了空间供暖的控制不仅仅是控制能力,还涉及家庭内外社会实践的动态。根据研究结果,本文为未来的 SHT 解决方案提出了四个具体的设计和政策含义。
使用不同类型的传感器对监视电池电压和电流参数的设备制造进行了研究。这项研究已经发布了一种设备,可以使用一个传感器在充电和放电过程中实时监视电池电压和电流参数。该设备是使用Arduino Mega Xpro 2560 R3形式的微控制器制成的,其输入的形式为INA219 GY-219传感器,以监视电池电压和电流。设备的输出是通过LCD自动控制电荷和放电电路的形式,并继电器从监视电池电压和电流参数中获取数据。本研究中要测试的用作材料的电池是可充电的锂离子类型。该设备可以根据制造商制定和设计的控制程序来监视电池的电压和电流参数,并且可以自动工作。基于INA219 GY-219传感器的测试结果,在读取电压时,平均传感器精度水平为99.96%,传感器误差平均速率为0.034%,传感器精度平均值为99.97%。同时,在读取电流中,平均传感器精度水平为98.39%,传感器误差平均率为1.608%,传感器的精度为98.98%。
大语言模型(LLM)可以调用各种工具和API来完成复杂的任务。作为最强大和最通用的工具,计算机可能会由训练有素的LLM代理控制。由计算机提供动力,我们可以希望建立一个更广泛的代理,以帮助人类进行各种日常数字作品。在本文中,我们为视觉语言模型(VLM)代理构建了一个环境,以与真实的compoter屏幕交互。在此环境中,代理可以通过输出鼠标和键盘操作来观察屏幕截图并操纵图形用户界面(GUI)。我们还设计了一个自动控制管道,其中包括计划,表演和反映阶段,指导代理商与环境不断互动并完成多步骤任务。此外,我们构建了Screena-Gent数据集,该数据集在完成每日计算机任务时会收集屏幕截图和计算序列。最后,我们培训了一个模型,即Crabitagent,该模型可以达到与GPT-4V的可比计算机控制能力,并展示了更精确的UI定位功能。我们的尝试可以进一步研究建立通才LLM代理商。代码和更详细的信息在https://github.com/niuzaisheng/screenagent上。
1 奥波莱理工大学电气工程学院、自动控制和信息学,45-758 奥波莱,波兰;m.podpora@po.edu.pl(MP);m.pelc@greenwich.ac.uk(MP)2 格林威治大学计算机与信息系统系,SE10 9LS 伦敦,英国 3 奥波莱理工大学体育与理疗学院,45-758 奥波莱,波兰;m.blaszczyszyn@po.edu.pl 4 尼古拉斯·哥白尼大学生物医学科学和医学信息学理论基础系,Collegium Medicum,85-067 比得哥什,波兰; medsystem@medsystem.com.pl 5 卡济米日·维尔基大学哲学研究所,85-092 比得哥什,波兰 6 巴宾斯基专科精神病保健中心,门诊成瘾治疗,91-229 罗兹,波兰 7 成瘾替代治疗协会“医疗辅助康复”,85-791 比得哥什,波兰 8 俄斯特拉发 VSB 技术大学控制论与生物医学工程系,FEECS,俄斯特拉发-波鲁巴 708 00,捷克共和国;radek.martinek@vsb.cz * 通信地址:kawala84@gmail.com (AK-S.);stepan.ozana@vsb.cz (SO)
