许多关键信息系统依赖于通过共享网络(例如互联网)进行通信。通过此类网络的数据通常很敏感,需要保密。如果处理不当,私人数据、身份验证码、时间信息或本地化等信息可能会被网络上的任何人访问。这可能导致安全攻击以检索或更改敏感数据 [ Kan+07 ; HZN09 ; Mod+13 ]。为了防止此类入侵,已经开发了各种安全方法和协议。然而,这些安全决策并不总能避免入侵。为了分析信息系统的安全性并突出其弱点,自关键信息系统出现初期就开始使用 FMEA(故障模式影响和危害性分析)[ Xu+02 ; Cas+06 ] 等技术标准。此后,人们开始探索更加结构化、基于模型的方法,例如 ADVISE 方法 [ LeM+11 ],该方法可以自动生成定量指标或形式化方法,例如团队自动机 [ BLP05 ] 和攻击树 [ KPS14 ],
许多关键信息系统依赖于通过共享网络(例如互联网)进行通信。通过此类网络的数据通常很敏感,需要保密。如果处理不当,私人数据、身份验证码、时间信息或本地化等信息可能会被网络上的任何人访问。这可能会导致安全攻击以检索或更改敏感数据 [Kan+07;HZN09;Mod+13]。为了防止此类入侵,已经开发了各种安全方法和协议。然而,这些安全决策并不总能避免入侵。为了分析信息系统的安全性并突出其弱点,自关键信息系统出现初期就开始使用 FMEA(故障模式影响和危害性分析)[Xu+02;Cas+06] 等技术标准。此后,人们开始探索更加结构化、基于模型的方法,例如 ADVISE 方法 [LeM+11],该方法可以自动生成定量指标或形式化模型,例如团队自动机 [BLP05] 和攻击树 [KPS14]。
许多关键信息系统依赖于通过共享网络(例如互联网)进行通信。通过此类网络的数据通常很敏感,需要保密。如果处理不当,私人数据、身份验证码、时间信息或本地化等信息可能会被网络上的任何人访问。这可能会导致安全攻击以检索或更改敏感数据 [Kan+07;HZN09;Mod+13]。为了防止此类入侵,已经开发了各种安全方法和协议。然而,这些安全决策并不总能避免入侵。为了分析信息系统的安全性并突出其弱点,自关键信息系统出现初期就开始使用 FMEA(故障模式影响和危害性分析)[Xu+02;Cas+06] 等技术标准。此后,人们开始探索更加结构化、基于模型的方法,例如 ADVISE 方法 [LeM+11],该方法可以自动生成定量指标或形式化模型,例如团队自动机 [BLP05] 和攻击树 [KPS14]。
许多关键信息系统依赖于通过共享网络(例如互联网)进行通信。通过此类网络的数据通常很敏感,需要保密。如果不小心处理,私人数据、身份验证码、时间信息或本地化等信息可能会被网络上的任何人访问。这可能会导致安全攻击以检索或更改敏感数据 [Kan+07;HZN09;Mod+13]。为了防止此类入侵,已经开发了各种安全方法和协议。然而,这些安全决策并不总能避免入侵。为了分析信息系统的安全性并突出其弱点,自关键信息系统出现初期就开始使用 FMEA(故障模式影响和危害性分析)[Xu+02;Cas+06] 等技术标准。此后,人们开始探索更加结构化、基于模型的方法,例如 ADVISE 方法 [LeM+11],该方法可以自动生成定量指标或形式化模型,例如团队自动机 [BLP05] 和攻击树 [KPS14]。
许多关键信息系统依赖于通过共享网络(例如互联网)进行通信。通过此类网络的数据通常很敏感,需要保密。如果处理不当,私人数据、身份验证码、时间信息或本地化等信息可能会被网络上的任何人访问。这可能会导致安全攻击以检索或更改敏感数据 [Kan+07;HZN09;Mod+13]。为了防止此类入侵,已经开发了各种安全方法和协议。然而,这些安全决策并不总能避免入侵。为了分析信息系统的安全性并突出其弱点,自关键信息系统出现初期就开始使用 FMEA(故障模式影响和危害性分析)[Xu+02;Cas+06] 等技术标准。此后,人们开始探索更加结构化、基于模型的方法,例如 ADVISE 方法 [LeM+11],该方法可以自动生成定量指标或形式化模型,例如团队自动机 [BLP05] 和攻击树 [KPS14]。
所提出的设计对单个缺失单元(表2-A)的断层具有100%的公差,对一个单元的旋转耐受性为71.43%(表2-B)。表3描述了设计对细胞位移的耐受性。另外,在网格中加上单元格故障将不会改变所提出的多数门的输出。表4和5演示了
摘要:内存及其数据通信在决定处理器的性能中起着至关重要的作用。为了获得高性能计算机,内存访问必须同样更快。在本文中,使用Set/Reset的双端口存储器是使用量子点蜂窝自动机(QCA)中的多数选民设计的。双端口存储器由基本功能块组成,例如2至4解码器,控制逻辑块(CLB),地址检查器块(ACB),内存单元格(MC),数据路由器块和输入/输出块。这些功能单位是使用三输入多数选民构建的。QCA是纳米级数字组件设计的最新技术之一。在qcadesigner 2.0.3中已经模拟和验证了双端口存储器的功能。一种称为逻辑交叉的新型跨界方法用于改善拟议设计的面积。逻辑交叉在适当的时钟区域分配的支持下进行数据传输。基于逻辑交叉的QCA布局是根据细胞计数和数量的数量来优化的。据观察,分别是29.81%,18.27%,8.32%,11.57%和3.69%是解码器,ACB,CLB,数据路由器和存储单元中细胞数量的改善百分比。另外,在解码器,ACB,CLB,数据路由器和存储器单元的区域中,可实现25.71%,16.83%,8.62%,4.74%和3.73%的改进。除了提出的使用逻辑交叉的提议的双端口存储器外,该区域的改善增长了8.26%;由于其构建所需的细胞数量减少了8.65%,因此这可能是可能的。此外,使用RCViewer+工具获得了RAM的量子电路。量子成本,恒定输入,门的数量,垃圾输出和总成本分别为285、67、57、50和516。
在每个醒来的时刻,我们都必须与环境,周围的人,我们使用的工具,甚至我们自己的身体进行行动并实现我们的意图。我们在周围的环境中拥有一系列控制,从而跨越了从充满的到来的极端。当我们的行动的结果与我们的目标不符时,我们具有巨大的能力,可以取代对外部因素的责备和沮丧,同时宽恕自己。当我们与机器合作时,尤其如此。他们很少能得到我们提供身体的宽恕水平,并且经常承担我们的大部分责任。然而,我们的大脑很容易参与控制身体的自主过程,以协调肌肉收缩的复杂模式,进行姿势调整,适应外部扰动等。对生物自主权的接受可能会提供途径,以促进更多宽容的人类机器伙伴关系。在此观点论文中,我们认为努力争取机器实施例是实现有效和宽恕人机关系的途径。我们讨论了帮助我们识别自己和身体与环境分开的机制,并描述了它们在实现具体合作中的作用。使用在神经接口的假肢和智能机电货币学中的代表性选择,我们描述了在设计自主系统及其潜在的双向接口时参与这些相同机制的技术。
近年来,从分子水平到原子和量子水平的建模兴趣显着增加。计算化学在设计和模拟原子和分子到工业过程的系统的计算模型中起着重要作用。它受到计算能力和算法效率的巨大提高所影响。使用经典自动机理论以热力学术语表示化学反应对计算机科学的影响很大。使用量子计算模型对化学信息处理的研究是一个自然目标。在这项研究中,我们使用双向量子有限的自动机对化学反应进行了建模,这些自动机在线性时间内停止。此外,经典的下降自动机可以为与多个堆栈的这种化学反应设计。已经证明,可以通过结合化学接受/拒绝签名和量子自动机模型来提高计算多功能性。
所产生的热量将不再消散并导致芯片损坏,但是随着大多数设备被装入同一区域。因此,有许多创造性技术和资源来取代基于晶体管的传统VLSI技术,已经通过纳米量表进行了深入的开发和研究[7]。QCA是一种创造性的有利晶体管,其数量范式较少,在纳米仪范围域中执行处理数据和路由数据,以及许多其他选择。QCA的特殊属性是一个单元反映逻辑状态。单元格是一种具有纳米级范围尺度的装置,能够在状态电子的两个组合中传输数据。QCA比传统CMOS技术的优势包括延迟,电力消耗和高密度结构,使我们能够在未来几年中进行量子计算。