该项目是评估应用于微型动力使用者的深度学习技术和计算机视觉技术的潜力的概念证明。 div>主要目的是开发和测试能够自动检测车辆,行人和轻型移动性的用户,估计其与用户的距离,并仅使用RGB摄像机的数据确定其在指定的自行车道中的存在。 div>
死藤水是亚马逊植物的混合物,数百年来一直被该地区的居民用作传统药物。此外,这种植物已被证明是治疗多种神经和精神疾病的有效方法。脑电图实验发现,特定的大脑区域因死藤水而发生了显著变化。在这里,我们使用脑电图数据集来研究使用机器学习和复杂网络自动检测大脑活动变化的能力。机器学习应用于三个不同的数据抽象层次:(A) 原始脑电图时间序列,(B) 脑电图时间序列的相关性,以及 (C) 从 (B) 计算出的复杂网络测度。此外,在 (C) 的抽象层次上,我们开发了与社区检测相关的复杂网络新测度。结果,机器学习方法能够自动检测大脑活动的变化,其中案例 (B) 的准确率最高 (92%),其次是 (A) (88%) 和 (C) (83%),这表明大脑区域之间的连接变化对于检测死藤水更为重要。最活跃的区域是额叶和颞叶,这与文献一致。F3 和 PO4 是最重要的大脑连接,这是迷幻文献中一个重要的新发现。这种联系可能指向类似于个体在死藤水介导的视觉幻觉过程中的面部识别的认知过程。此外,接近中心性和分类性是最重要的复杂网络指标。这两个指标也与阿尔茨海默病等疾病有关,表明可能存在治疗机制。此外,这些新指标对预测模型至关重要,表明使用死藤水与更大的大脑群落有关。这表明,当这种药物存在时,功能性大脑网络中的信息传播速度会变慢。总体而言,我们的方法能够自动检测服用死藤水期间大脑活动的变化,并解释这些迷幻药如何改变大脑网络,以及深入了解它们的作用机制。
癫痫发作是最常见的神经系统疾病之一,其特征是大脑神经元突然异常放电。使用脑电图 (EEG) 记录自动检测癫痫发作将提高治疗质量并减少医疗费用。本文的目的是设计一个自动癫痫发作检测框架,通过发现大脑区域之间的连通性来有效识别癫痫发作和非癫痫发作事件。在本文中,提出了一种基于加权有向图的有效大脑连接 (EBC) 方法来检测癫痫发作。通过分析大脑不同区域之间的相关性来构建加权有向图。然后,使用基于图论的度量来提取分类特征。此外,我们说明了所提出的方法实现针对特定患者模型和跨患者模型的癫痫发作检测的能力。结果表明,所提出的方法在 CHB-MIT 数据集中针对特定患者模型和跨患者模型的准确率分别达到 99.97% 和 98.29%。这些结果表明,所提出的方法实现了有效的分类性能,可用于为癫痫发作的自动检测和临床诊断提供帮助。
• Poostchi Mahdieh 等人,使用薄血涂片显微镜对人类和小鼠进行疟原虫检测和细胞计数,医学影像杂志 5,第 4 期 (2018):044506。• Feng Yang 等人,级联 YOLO:在薄血涂片中自动检测间日疟原虫,将于 2020 年 2 月 18 日至 20 日在美国休斯顿的 SPIE 医学影像大会上发表。
摘要 越来越高的分辨率卫星图像引起了人们对自动检测某个区域随时间推移的非常精细的变化的兴趣,这是一种分析人口密集城市地区活动特别有用的工具。然而,由于高架结构的运动视差,尝试以这种分辨率自动检测变化非常困难。本文提出了一种全面的解决方案,使用一种称为体积外观建模 (VAM) 的新框架来检测具有显著 3D 起伏的区域的变化。这种方法可以通过维护一个基于 3D 体素的模型来管理未知和变化的世界表面的复杂性,其中表面占用和图像外观的概率分布存储在每个体素中。这些分布会在使用自适应学习程序接收新图像时不断更新。事实证明,这种表示可以在卫星图像中存在可变照明和视点以及雾霾条件的情况下产生准确的变化检测结果。体积表示还支持自动传感器模型校正,以将传入图像与通用地理参考对齐。事实证明,这种配准方法可以实现与地面采样距离(GSD)相当或更好的地理定位精度。
摘要:非常高分辨率(VHR)卫星图像的出现(少于1 m的空间分辨率)正在生态和保护生物学领域创造新的机会。次级分辨率图像的进步在实地特征的检测和识别方面提供了更大的信心,从而扩大了可能的研究问题领域。迄今为止,VHR图像研究主要集中在陆地环境上。但是,在过去的二十年中,使用该技术检测鲸类动物已经取得了进步。随着计算能力和传感器分辨率的进步,使用VHR卫星图像具有自动检测和分类过程的VHR卫星图像的大规模VHR海洋调查的可行性有所增加。对自动调查的初步尝试显示出令人鼓舞的结果,但需要进一步的发展来确保可靠性。在这里,我们讨论了可以使用VHR卫星图像来解决鲸鱼保护中的紧急问题的未来方向。我们强调了当前对自动检测的挑战,并将该技术的使用扩展到所有海洋和各种鲸鱼。为了实现盆地规模的海洋调查,目前不可行任何传统的测量方法(包括船基和航空调查),未来的研究需要生物学,计算科学和工程学之间的合作努力,以克服目前对该平台使用的挑战。
计算重建误差。大多数电池模块老化正常。此外,当正常老化模块中电池单元的运行数据与训练模型时使用的运行数据性质相同时,计算出的重建误差较小。然而,当电池模块中电池单元的运行数据与学习 ₂ 期间输入的运行数据性质不同时,计算出的重建误差较大。因此,可以根据重建误差的大小提前自动检测可能发生故障的电池模块。
Bob Gramling 和一个支持团队承担了研究临终关怀对话模式的任务,旨在更好地了解沟通在临终患者旅程中的影响。这包括分析对话中传达的情绪、沉默和停顿时刻以及患者的反应。这项研究的目的是利用人工智能自动检测医生和患者之间发生的情感联系,以便更好地培训临终关怀领域的医疗专业人员。
M100 8步电池充电器和维护器配备了一系列配件,可与不同类型的电池一起使用。它的三种可选程序模式使其适合与14-225AH电池和AGM电池一起使用,并且可以自动检测您的电池是否接近其寿命。M100还具有重新装饰深度放电电池的重新束缚模式,甚至可以用作12V电源源,例如,如果您需要卸下电池而不会丢失设置。